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Abstract 

Black-box optimization (BBO) involves functions that are unknown, inexact and/or 

expensive-to-evaluate. Existing BBO algorithms face several challenges, including high 

computational cost from extensive evaluations, difficulty in handling complex constraints, 

lacking theoretical convergence guarantees and/or instability due to large solution quality 

variation. In this work, a machine learning-powered feasible path optimization framework 

(MLFP) is proposed for general BBO problems including complex constraints. An adaptive 

sampling strategy is first proposed to explore optimal regions and pre-filter potentially 

infeasible points to reduce evaluations. Machine learning algorithms are leveraged to 

develop surrogates of black-boxes. The feasible path algorithm is employed to accelerate 

theoretical convergence by updating independent variables rather than all. Computational 

studies demonstrate MLFP can rapidly and robustly converge around the KKT point, even 

training surrogates with small datasets. MLFP is superior to the state-of-the-art BBO 

algorithms, as it stably obtains the same or better solutions with fewer evaluations for 

benchmark examples. 
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1. Introduction 

Black-box optimization (BBO) problems are a category of optimization problems where the 

algebraic form of the objective function and/or constraints is either unknown, inexact, or 

expensive to evaluate1–3. In chemical engineering, many systems cannot be fully captured 

by mechanistic models such as complex chemical4–8 or biological9,10 reaction networks (e.g., 

multi-step catalytic reaction 8,10) and molecular structure–activity relationships11–13 (SARs, 

e.g., linking polymer chain architecture to material performance11). Furthermore, even when 

mechanistic models is available to describe specific processes, solving them is frequently 

prohibitively expensive, which is true of molecular simulations (e.g., density functional theory 

calculations)14–16, flow field simulations (e.g., computational fluid dynamics for reactor 

design) 17–19, and process simulations (e.g., rigorous distillation column modeling)20–22. Such 

systems are thus treated as black-boxes, yet they serve as critical foundational components 

in chemical design and manufacturing. Optimizing their design and operation typically 

depends on optimization approaches4–6,17,23–25. Therefore, advancing BBO methods can 

substantially accelerate research and development of chemical engineering. 

 However, BBO faces a series of challenges. Owing to the absence of closed-form 

expressions for black-boxes, it is quite difficult to evaluate gradient information of the black-

box functions for generating an effective search direction. As a result, researchers usually 

evaluate the objective function value directly and determine the next iteration point based 

on the current function value rather than its derivatives26–28. A well-known category of BBO 

algorithms is stochastic or heuristic algorithms, such as hit-and-run algorithm29, particle 

swarm optimization (PSO)30,31, simulated annealing (SA)28 and genetic algorithm (GA)32,33. 

These algorithms search and break away from a local optimum by designing random or 

heuristic rules. Although they provide global search capability of finding good feasible 

solutions, convergence cannot be theoretically guaranteed. They also need extensive 

evaluation of the black-box functions, substantially increasing the computational effort. 
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Correspondingly, some BBO algorithms employ deterministic partition search rules, such as 

pattern search34, multilevel coordinate search35, DIRECT (DIviding RECTangles) 

algorithm26,36. However, these algorithms typically require extensive evaluations of black-

box functions, resulting in the optimization extremely time-consuming or expensive. 

Therefore, researchers have adopted surrogate model-based methods to address BBO 

problems, reducing the number of evaluations of black-box functions. 

 Surrogate model-based BBO methods can be broadly categorized into two classes: 

one involves sampling and updating the surrogate models dynamically during the 

optimization process; the other relies on constructing a high-fidelity surrogate model in 

advance and then performing optimization directly based on it. The former mainly includes 

implicit filtering37, rectified linear unit neuron network (ReLU NN)-based optimization 

approach with adaptive uncertainty-aware sampling38, the automated learning of algebraic 

models for optimization (ALAMO)39,40, trust-region methods41–44, and Bayesian optimization 

(BO)45–49. The implicit filtering algorithm is designed to solve bound-constrained BBO 

problems by constructing the approximated derivatives through numerical differentiation50. 

However, this method is not well-suited for general BBO problems. The ReLU NN-based 

optimization framework38 initially employs low-discrepancy sequence sampling and trains a 

ReLU NN as surrogate. At each iteration, adaptive resampling with uncertainty assessment 

is conducted to update the ReLU NN, and the problem is reformulated as MILP for solution. 

Complex neural network architectures can lead to an excessive number of binary variables, 

making the problem computationally intractable or even infeasible51. This implies that the 

structure of the neural networks should remain relatively simple, making it suitable only for 

low-dimensional or weakly nonlinear problems. ALAMO employs best subset selection 

techniques to construct low-complexity algebraic models, which are iteratively updated 

through adaptive sampling during the optimization process. ALAMO needs to solve a mixed-

integer linear programming (MILP) problem when constructing the surrogate model at each 
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iteration. The accuracy of the surrogate model is critically dependent on the pre-specified 

basis functions. More importantly, the subset selection methods may not perform well under 

high-dimensional inputs.39 

 The trust-region methods offer a theoretically grounded approach for solving general 

BBO problems. When employing κ-fully linear models, trust-region filtering (TRF) has been 

proven to converge to first-order critical points42,52. Nevertheless, the method could require 

a substantial number of function evaluations in practice43. To address this issue, Liang et al. 

proposed a TRF variant based on Gaussian Process (GP) surrogate models43, which was 

able to converge to regions close to the KKT points using significantly fewer evaluations. 

One limitation of the TRF methods is that, when analytical gradients are unavailable, it 

resorts to finite differences for gradient estimation53, this can introduce inaccuracies in the 

Jacobian matrix. In turn, the approximate Hessian matrix used in TRF may become ill-

conditioned, undermining stability and convergence precision. Besides, TRF may exhibit 

limited applicability in scenarios involving multiple black-box functions, as it would require 

establishing separate trust regions and sampling subspace for each black-box function. 

 BO is another widely used45–49 BBO algorithm due to its capability to quantify the 

uncertainty of black-box functions as well as to establish surrogate models by using only a 

small amount of samples. The most commonly used surrogate model is Gaussian processes 

(GP)54 in BO where the noise-free GP model is also known as Kriging model55,56. As a non-

parametric model, GP is computationally efficient under a small dataset, making it well-

suited for situations where frequent updates of surrogate models are required during the 

optimization process. Most BO-based algorithms assume only inequality constraints are 

involved in the generally constrained BBO problems and have little emphasis on BBO 

problems with complex equality constraints. Recently, Tian and Ierapetritou55 proposed a 

framework for BBO problems with inequality constraints, which are formulated as a 

classification task. Based on this framework, Fan et al.53 further developed an adaptive 
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sampling Bayesian optimization algorithm (ASBO) to handle both inequality and equality 

constraints. Additional strategies were introduced to achieve a balanced trade-off between 

solution feasibility and optimality. However, a notable limitation of BO lies in the stochasticity 

of its outcomes. Computational studies have shown that, with different initial data, repeated 

runs of BO can yield results that vary significantly — in some cases, by up to 300%.53 

 To mitigate the sensitivity of GP-based method (including BO and GP-based trust-

region method) to initial sampling, the alternative method that first construct a relatively 

accurate surrogate model and then execute the optimization would be preferred. This 

alternative method is especially effective in certain situations where the available dataset is 

quite limited, and active sampling may not be viable in practice. Under such a framework, 

researchers focus on constructing more accurate surrogate models and attempt to find the 

theoretically optimal solutions of surrogates. With the advancement of machine learning (ML) 

techniques, taking ML models as surrogates and then optimizing has been widely adopted 

by the PSE community due to their fast output prediction and strong regression capabilities. 

Therefore, algorithms that rely on extensive function evaluations to find an optimum, such 

as GA, and PSO, are commonly used to optimize the surrogates57–59. More recently, 

researchers have made significant effort in combining ML surrogates with deterministic 

derivative-based algorithms23,60–62, offering a theoretical convergence. Among the most 

advanced techniques, researchers reformulate the explicit algebraic expressions of ML 

models in conjunction with deterministic solvers62–68. Some researchers directly employ the 

explicit formulations of neural networks as nonlinear constraints65–67. Concurrently, another 

cohort of researchers has explored the utilization of decision trees 61–63 or neural networks 

with ReLU activation functions 51,64,69–71, which can be reformulated as mixed integer 

constraints. This strategy aims at tackling the ML surrogates assisted BBO with MILP63,70 or 

transforming nonconvex NLP into MILP which can be solved to global optimality51,62. 

However, these methods usually neglect the computational burden for sampling and training 
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the ML models, which is usually time-consuming. A trade-off among the number of samples, 

prediction accuracy, and the complexity of algebraic expressions should be balanced well. 

This is because higher model accuracy generally requires more samples and introduces 

more nonlinear terms or binary variables, thereby increasing the challenges for optimization. 

 To overcome disadvantages of the aforementioned BBO methods, in this study we 

propose a novel machine learning-based feasible path optimization (MLFP) framework for 

solving general BBO problems where complex equality and inequality constraints are 

involved. In this framework, an efficient adaptive sampling strategy is first proposed, which 

filters out potentially infeasible samples with support vector machine (SVM) and focuses on 

regions likely to contain optimal solutions. This ensures that an informative set of samples 

can still be obtained even under limited data conditions. As a result, a small number of 

samples (e.g., 1000) are required to develop high prediction accuracy of the surrogate 

models by machine learning algorithms. Then, the feasible path optimization methods72–75 

are integrated, which enables the optimization process to circumvent large number of 

intermediate variables within the surrogate models, thereby obtaining derivatives of outputs 

respect to inputs. As a result, even sophisticated ML models can be effectively employed as 

surrogates without compromising computational costs and predictive accuracy. The 

computational results demonstrate that the proposed adaptive sampling approach achieves 

a substantial reduction in the required number of samples compared to widely used Latin 

hypercube sampling (LHS) strategy. The implementation of the feasible path method 

significantly improves computational speed, allowing the optimization to be completed within 

just a few seconds. For all benchmark problems with known global optima, the proposed 

MLFP reliably converges to the true optimal solution, highlighting its effectiveness and 

numerical robustness. It is also superior to the state-of-the-art BBO algorithms due to the 

same or better solutions being stably obtained with fewer evaluations for the benchmark 

examples. 
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 The remaining structure of the article is as follows. The overall NLP BBO problem 

studied is defined in Section 2. The detailed information of surrogate-assisted hybrid feasible 

path framework is presented in Section 3. Section 4 offers thirteen Examples and their 

results as well as comparison with state-of-the-art BBO algorithms. Finally, Section 5 

provides conclusion and prospect. 

2. Problem description 

The general form of a BBO problem to be solved in this work is presented below, which is a 

nonlinear programming (NLP) problem. 

𝑚𝑖𝑛
𝐱∈ℝ𝑛

𝑓(𝐱)

s.t. 𝐡(𝐱) = 0

𝐠(𝐱) ≤ 0

𝐱𝒍𝒃 ≤ 𝐱 ≤ 𝐱𝒖𝒃

(𝐏𝟎) 

where the function 𝑓：ℝ𝑛 → ℝ  is the objective function, 𝐡:ℝ𝑛 → ℝ𝑝𝐸  is the equality 

constraints and 𝐠:ℝ𝑛 → ℝ𝑝𝐼 is the inequality constraints excluding the bounding constraints. 

𝑝𝐸 , and 𝑝𝐼  represent the dimensions of equations and inequalities respectively; 𝐱 

represent a vector of variables; the superscript 𝑢𝑏  represents the upper bound, and 

𝑙𝑏  represents the lower bound. In this setting, the black-box function may pertain to the 

objective function 𝑓  as well as to the constraint functions 𝐡  (equalities) and 𝐠 

(inequalities), depending on the problem structure. 

 Without loss of generality, we divide the equality constraints 𝐡(𝐱) = 0 into 𝐡𝟏(𝐱) = 0 

and 𝐡𝟐(𝐱) = 0  where 𝐡𝟏(𝐱) = 0  containing all black-box constraints and 𝐡𝟐(𝐱) = 0 

without containing any black-box functions. If any inequality constraints 𝐠𝒋(𝐱) ≤ 0 

containing black-box functions, we can introduce auxiliary variables 𝐯 and let 𝐯 = 𝐠𝒋(𝐱). 

We then add 𝐯 = 𝐠𝒋(𝐱)  into 𝐡𝟏(𝐱) = 0  and remove 𝐠𝒋(𝐱) ≤ 0  from the inequality 

constraint sets 𝐠(𝐱) ≤ 0 . The auxiliary variable 𝐯  is then added into variables 𝐱 . The 

original BBO problem (P0) can be reformatted into (P1) below, 
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𝑚𝑖𝑛
𝐱∈ℝ𝑛

𝑓(𝐱)

s.t. 𝐡𝟏(𝐱) = 0

𝐡𝟐(𝐱) = 0

𝐠(𝐱) ≤ 0

𝐱𝒍𝒃 ≤ 𝐱 ≤ 𝐱𝒖𝒃

(𝐏𝟏) 

where 𝐡𝟏: ℝ
𝑛 → ℝ𝑝𝐸1  and 𝐡𝟐: ℝ

𝑛 → ℝ𝑝𝐸2 are the equality constraints and 𝐠:ℝ𝑛 → ℝ𝑝𝐼  is 

the inequality constraints excluding the bounding constraints. 𝑝𝐸1, 𝑝𝐸2and 𝑝𝐼 represent the 

dimensions of equations and inequalities respectively. In this setting, the black-box function 

may pertain to the objective function 𝑓 as well as to the constraint functions 𝐡𝟏 (equalities). 

3. Surrogate-assisted feasible path framework 

As 𝑓(𝐱) and/or 𝐡𝟏(𝐱) = 0 in problem (P1) contain black-box functions that are unknown or 

expensive for evaluation, we need to develop surrogate models for these black-box 

functions. To do this, we can divide all variables in (P1) into independent variables (denoted 

as 𝐱𝐼) and dependent variables (denoted as 𝐱𝐷) where 𝐱𝐷 has the same dimension as 𝐡𝟏. 

Then, problem (P1) can be transformed into problem (P2). 

𝑚𝑖𝑛
𝐱∈ℝ𝑛

𝑓(𝐱𝐼 , 𝐱𝐷)

s.t. 𝐡𝟏(𝐱𝐼, 𝐱𝐷) = 0

𝐡𝟐(𝐱𝐼, 𝐱𝐷) = 0

𝐠(𝐱𝐼 , 𝐱𝐷) ≤ 0

𝐱𝐼
𝒍𝒃 ≤ 𝐱𝐼 ≤ 𝐱𝐼

𝒖𝒃

𝐱𝐷
𝒍𝒃 ≤ 𝐱𝐷 ≤ 𝐱𝐷

𝒖𝒃

(𝐏𝟐) 

The proposed optimization framework is illustrated in FIGURE 1. The proposed framework 

mainly consists of three components, including the adaptive sampling strategy, construction 

of surrogate models, and the feasible path-based optimization approach. The details about 

each component will be explained in following subsections. 
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FIGURE 1 Proposed MLFP framework for general BBO problems. 

3.1 Adaptive sampling strategy 

Adaptive sampling plays an increasingly important role in surrogate assisted BBO9,23,53, due 

to its ability to generate higher quality data, establish more accurate models, and reduce the 

number of function evaluations. Most adaptive sampling strategies are typically integrated 

with the optimization process iteratively23,39,53,76, whereby the next sampling point can be 

selected based on the current optimization results. While effective for algorithms coupling 

optimization with sampling, such approaches are not well-suited for applications in the 

decoupled algorithms. To address this limitation, we propose a new adaptive sampling 

strategy to construct a global dataset that can be used to establish surrogate models before 

optimization, with particular emphasis on capturing fine details near the optimal region and 

bounds. 

 In the proposed strategy, we consider two scenarios. The first scenario is the case 

where the outputs of the surrogate model constructed are not constrained in the optimisation 
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model. In other words, all dependent variables in the surrogate models are free variables in 

the optimisation problem. The other scenario is the case where the outputs of the surrogate 

model established are constrained in the optimisation problem. While we focus only on the 

potentially optimal region and the details near the bounds for the first scenario, we must 

further consider the regions close to the constraint boundaries for the latter. The existence 

of constraints on the outputs of the surrogate models is clearly a more general consideration, 

whereas the first scenario can be handled with a simplified approach. We provide a detailed 

description of the adaptive sampling strategy proposed in this work in the following. 

 Firstly, the original bounds of each independent variable are slightly expanded near its 

boundary to form new bounds (e.g.,  5% of the original bounds). Then sampling on the 

independent variables is conducted within the new bounds by using LHS and a small-scale 

sample of independent variables (e.g., 10% of the total samples required) is thus obtained. 

At each sample, the black-box function is evaluated with the purpose of obtaining an overall 

understanding of the black-box function values and identifying potentially promising regions. 

 Secondly, the samples generated are used to evaluate constraints to check their 

feasibility. If a sample satisfies all constraints, then it is labelled as 1, indicating a feasible 

point. Otherwise, it is labelled as 0, indicating an infeasible point. All these samples are used 

as training points to develop a SVM for classification. Due to the limited sample size, the 

initial SVM classifier tends to be inaccurate. To address this issue, we extract the support 

vectors from the trained SVM model and retrain the classifier by treating all support vectors 

as feasible. This approach enables inclusion of a small number of infeasible points near the 

constraint boundaries within the feasible region, thus ensuring a more accurate 

representation of the boundary details. 

 Thirdly, a sub-region is established around the best-performing point currently 

identified within the feasible region, and LHS is conducted within this localized area. 

Importantly, we employ the trained SVM model to exclude potentially infeasible points from 
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the sample pool, preventing the waste of computational resources on evaluating function 

values at non-promising, infeasible locations. The computational procedure of the adaptive 

sampling strategy is illustrated in FIGURE 2. For a comparative illustration against LHS, 

refer to FIGURE S1 in the Supplementary Material. 

 

FIGURE 2 Flowchart of the proposed adaptive sampling strategy. 

3.2 Construction of surrogates with derivatives 

Before we build high-quality surrogate models, it is of great importance to determine 

independent variables and their valid bounds. In this section, we outline the determination 

of independent variables and their bounds, and explain the criteria for selecting appropriate 

surrogate models within the proposed framework. 

3.2.1 Selection of independent variables and bounds 

Defining appropriate independent variables and their ranges is crucial for construction of 

surrogates. Independent variables are typically those that can be manually adjusted, such 

as reaction temperature, pressure, and residence time. For problems in which the 

independent variables are not readily apparent, it is essential to prioritize inputs that have a 



 

12 

substantial influence on the dependent variables. This can be achieved through degree of 

freedom analysis, sensitivity analysis and/or feature selection techniques based on a small 

amount of sampling data. The number of independent variables required for the system can 

be determined through degrees of freedom analysis. Then sensitivity analysis can be 

performed to select variables that have significant impacts on the system. Feature selection 

can also be used to determine the optimal subset of features, including Filter, Wrapper and 

Embedded methods. 

 The ranges of independent variables are mainly determined by the following factors. 

First, there are physical constraints from the real world, including the range of human 

operability, equipment capacity, design margin, and safe operating conditions. These often 

define the hard boundaries within which the system can function properly. Second, the 

reaction conditions themselves impose limitations. For example, a certain chemical reaction 

may only produce the desired product within a specific temperature range. Third, operational 

experience or results obtained through trial or experience can also influence variable ranges. 

While this factor is not mandatory, it is often effective in narrowing down the feasible region 

and improving optimization efficiency. 

3.2.2 Selection of appropriate surrogates 

Machine learning (ML) models are of particular interest due to their strong regression 

capabilities. Several commonly used ML models—including decision trees (DT), support 

vector regression (SVR), neural networks (NN), and Gaussian process regression (GPR)—

are introduced. The corresponding algebraic formulations, along with their derivatives, are 

provided in Section S2 of the Supplementary Material. 

 To ensure mathematical rigor, the surrogate model 𝐬(𝐱) should belong to 𝒞2, which 

means it needs to be both continuous and twice differentiable. Therefore, Decision trees are 

not recommended for use. This is primarily because their decision boundaries are non-

smooth, rendering them non-differentiable at these decision boundaries. Additionally, their 
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predictive models are typically limited to simple forms such as mean-based or linear models, 

failing to provide second-order derivatives. Besides, given that surrogate models are 

typically multi-input multi-output systems, NN and GPR are more recommended than SVR. 

Also, it should be noted that both the kernel function of GPR and the activation function of 

NN should belong to 𝒞2. 

 In this work, we choose NN with Swish function as activation function. Compared to 

GPR, NNs are capable of achieving higher prediction accuracy. This advantage can be 

attributed to the Universal Approximation Theorem, which theoretically demonstrates that a 

NN with a single hidden layer can approximate any continuous function. Notably, deep 

neural networks exhibit greater efficiency in approximating complex, high-dimensional 

functional relationships, further enhancing prediction performance relative to GPR. In 

addition, saturated activation functions such as Sigmoid and Tanh tend to suffer from the 

vanishing gradient problem as network depth increases. To address this issue, a non-

saturated activation function belonging to the 𝒞2 is required, which is why we opted for the 

Swish function. 

3.3 Feasible path optimization algorithm 

After the surrogate models for 𝐡1(𝐱) = 0 and/or the objective function are developed, then 

𝐡1(𝐱) = 0  and/or the objective function in problem (P2) are replaced by the surrogates 

denoted as 𝒙𝐷 = 𝐬(𝐱𝐼) and/or 𝑓𝑠(𝐱𝑰) and problem (P3) below is obtained. 

𝑚𝑖𝑛
𝐱∈ℝ𝑛

𝑓(𝐱𝑰, 𝐱𝐷) or 𝑓𝑠(𝐱𝑰)

s.t. 𝐱𝐷 = 𝐬(𝐱𝐼)

𝐡𝟐(𝐱𝑰, 𝐱𝐷) = 0

𝐠(𝐱𝑰, 𝐱𝐷) ≤ 0

𝐱𝐼
𝒍𝒃 ≤ 𝐱𝐼 ≤ 𝐱𝐼

𝒖𝒃

𝐱𝐷
𝒍𝒃 ≤ 𝐱𝐷 ≤ 𝐱𝐷

𝒖𝒃

(𝐏𝟑) 

 To solve problem (P3) effectively, we employ the pseudo-transient continuation (PTC) 

based hybrid feasible path optimization algorithms developed by Ma et al.73, which divide 

the entire problem (P3) to two subproblems including a small optimization problem in the 
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outer level and a process simulation problem in the inner level. While the small optimization 

problem in the outer level can be solved using the existing gradient-based optimization 

algorithms such as improved SQP72,75, the process simulation problem in the inner level 

could be solved using solution algorithms for nonlinear equations such as a Newton-based 

algorithm77 or PTC approach78. More details about the hybrid feasible path optimization 

algorithms can be referred to Ma et al.73. The entire hybrid feasible path optimization 

algorithms are illustrated in ALGORITHM S2 of the Supplementary Material. 

4. Computational studies 

We solve thirteen examples to evaluate the capability of the proposed MLFP framework, 

including ten benchmark test functions with known globally minimum values43,79, the classic 

Williams-Otto process optimization problem43, extractive distillation for separation of toluene 

form n-heptane70 and CO2 capture from biogas from Xu et al.80. Throughout these examples, 

multilayer perceptrons (MLPs) are used to construct surrogate models with the Swish 

activation function shown in Eq.(1). All examples are solved on a desktop with Intel(R) 

Core(TM) i9-14900K (3.20 GHz) processor and 128 GB of RAM running Windows 11 64-bit 

operating system. 

𝑆𝑤𝑖𝑠ℎ(𝑥) =
𝑥

1+𝑒−𝑥
                                                                                                                                  (1) 

4.1 Examples 1-6 

Six typical functions from Virtual Library of Simulation Experiments79 as shown in TABLE S1 

of the Supplementary Material are selected as test functions. Examples 1-6 are Sphere 

function, Quadratic function, six hump-camel function, Schaffer No.2 function, Griewank 

function, and Ackley function, respectively. Except for the Sphere function in Example 1 and 

a special form of Quadratic function in Example 2, which are high-dimensional convex 

functions, the other four functions in Examples 3-6 are nonconvex and possess multiple 

local minimum points. We construct the surrogate models for these 6 functions, which are 

included in the dataset (the surrogates of the following examples are also included), with the 
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corresponding access link provided in the Supporting Information. The performance of the 

six surrogate models is illustrated in FIGURE S5. From FIGURE S5, it is clearly 

demonstrated their capability to serve as effective and accurate surrogates for the original 

test functions (i.e., mean squared error on test set varying from 0.27 to less than 0.01, and 

R2 varying from 0.87 to 1). 

 FIGURE 3 shows the convergence curves for solving the six surrogate models by 

using MLFP with all initial points at 𝑥𝑖 = 𝑥𝑖
𝑢𝑏  or 𝑥𝑖

𝑙𝑏. ‖𝑥̂∗ − 𝑥∗‖2 represent the distance 

between the obtained optimal solution 𝑥̂∗ and true globally optimal solution 𝑥∗ (marked 

with black dashed line in FIGURE 3), which does not exceed 0.1 for the six examples. The 

colored dashed lines represent the predicted values of the surrogate models at each 

iteration, while the colored solid lines represent the actual output values of the black-box 

function corresponding to the inputs. According to the true function value at the obtained 

solution and the globally minimum value, the results indicate that MLFP successfully 

converges to the global optimum in an extremely short time, varying from 0.1s to 1s in 

Example 1-6. 
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FIGURE 3 Convergence curves of MLFP for Examples 1-6. 

4.2 Examples 7-10 
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To further demonstrate the effectiveness of the proposed MLFP framework, we solve 4 

additional test functions43 (i.e., Examples 7-10), including Hartmann 3D function (Example 

7), Powel function (Example 8), Rosenbrock function (Example 9) and Trid function 

(Example 10). We assume that evaluations of these functions were particularly expensive. 

Therefore, they are treated as black-box functions. We employ the adaptive sampling 

strategy proposed in the MLFP framework to generate a small yet informative sample set 

for constructing surrogate models of these black-box functions. The convergence curves are 

depicted in FIGURE 4 (a-d). As shown in FIGURE 4 (a-d), MLF converges to the optimal 

solution79 (see the black dashed line) for all these examples. Specially, MLFP converges to 

−3.86 for Example 7 within 0.2 s, to 0.08 for Example 8 within 0.35 s, to 0.05 for Example 9 

within 0.2 s and to −49.99 for Example 10 within 0.2 s. 

 

FIGURE 4 Convergence curves of MLFP for Examples 7-10. 
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 Due to the inherent random characteristics of the sample points generated by the 

proposed adaptive sampling strategy, the surrogate models may be different for each run 

with varying prediction accuracy, which may affect the optimization performance. To 

evaluate the stability of the proposed MLFP framework, it is executed 30 times, which are 

same as that in Liang et al. 43. The computational results on the number of function 

evaluations with 30 runs are illustrated in FIGURE 5. Boxplot of the optimization results with 

30 runs are illustrated in FIGURE 6. These results are compared with those from TRF-linear 

(TRF-1), TRF-simplified quadratic (TRF-2), TRF-standard quadratic regression (TRF-3) and 

TRF-GP (TRF-4) reported in Liang et al. 43. 

 

FIGURE 5 Median of function evaluations by TRF 1-4 and MLFP for Examples 7-10. 
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FIGURE 6 Boxplot of optimization results for Examples 7-10 from MLFP with 30 runs. 

 As illustrated in FIGURE 5(a-d), MLFP requires 200 function evaluations for Example 

7, 250 for Example 8, 350 for Example 9 and 300 for Example 10. The number of function 

evaluations required by MLFP is significantly less than that from TRF-1, TRF-2, and TRF-3. 

For instance, MLFP requires 350 function evaluations for Example 9, whilst TRF-1, TRF-2 

and TRF-3 require 4043, 4740, and 1600 function evaluations, respectively, which are 

91.34%, 92.62%, 78.13% more than that from MLFP. The number of function evaluations 

required by MLFP is still smaller than that required by TRF-4. For instance, MLFP requires 

350 function evaluations for Example 9, while TRF-4 requires 406 function evaluations. 

 From FIGURE 6, it can be observed that MLFP converges to the vicinity of the global 

optimum for Examples 7 and 10 in most runs, demonstrating its stability. The maximum 

deviation is about 0.07% for Example 7. However, for Examples 8-9 the median deviation is 

about 2.4%, 3×105 %, and 2.93×105 %, assuming the minimum value of 0 is 10−5. The large 

median deviation for Examples 8-9 is due to the minimum value being 0. Furthermore, as 
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pointed out by Liang et al.43, for large-scale gray-box problems, the TRF framework requires 

solving a trust-region subproblem, which is a large-scale NLP, at each iteration. The 

computational cost of solving such subproblems can even exceed that of training GP. In 

some cases, the time for a single iteration may even exceed that of training the GP model, 

potentially taking several minutes per iteration (not including function evaluation time)43. In 

comparison, after the surrogate model has been well-constructed, MLFP only needs to solve 

the large-scale NLP problem once. The total time of MLFP for Examples 7-10 is within 15 

min. 

4.2 Example 11: Williams-Otto process 

The Williams-Otto (WO) process is a classical benchmark that has been widely adopted for 

evaluating optimization algorithms. A schematic diagram of the WO process and the 

equation-oriented (EO)-based optimization model can be found in Eq.(S46)-(S52) of the 

Supplementary Material. The objective is to maximize return on investment (ROI) by 

adjusting the reactor volume 𝑉 , reaction temperature 𝑇 , and the feed flow rates of 

components A and B (𝐹𝐴 and 𝐹𝐵), and stream recycle ratio 𝜂. The inputs to the surrogate 

models are 𝑉, 𝑇, and 𝐹𝐴, 𝐹𝐵 and 𝜂, which also serve as the independent variables in the 

optimization problem. The outputs include the objective function value (ROI) and the product 

stream flow rate 𝐹𝑃, which are dependent variables subject to bound constraints. 

 In this example we compare the performance of TRF 1-4 with MLFP under different 

samples used. We also compare the performance of the proposed adaptive sampling 

strategy and the LHS strategy in MLFP. In MLFP with LHS we generate 100, 200, 350, 500, 

and 1000 valid sampling points (successful simulation convergence), respectively, which 

correspond to MLFP1-5. In MLFP with the proposed adaptive sampling strategy, we also 

generate 100, 200, 350, 500 and 1000 valid sampling points, respectively, which are labelled 

as MLFP6-10. 

 The convergence curves of MLFPs are shown in FIGURE 7. As shown in FIGURE 7 
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(a), MLFP7-MLFP10 are capable of converging to the points around the KKT point (see the 

black dashed line), while MLFP1-5 fails to converge to the KKT point as shown in FIGURE 

7 (b). The shaded region around a convergence curve in FIGURE 7 represents the 

difference between the predicted and actual values. It is clearly shown that when the number 

of valid sampling points increases, the shaded region becomes narrow, indicating that the 

difference is reduced. In other words, increasing the number of valid sampling points would 

help increase model prediction accuracy. It can also be observed that when the iterate 

approaches the true optimal value, the shaded region diminishes. This may indicate that the 

samples from the adaptive sampling strategy are mainly clustered around the rigorous-

based optimal solution. To verify this hypothesis, we merge the samples obtained from 30 

runs, divided the MLFP into 5 groups, and assigned the same number of sampling points to 

each group. We then conducted sampling for each group using LHS and AS respectively, 

with the probability density functions shown in FIGURE 8. FIGURE 8 shows that under the 

same sampling number, the highest peak of AS is closer to 0 than LHS, indicating that the 

sample distribution is closer to the rigorous model-based optimal solution. And as the 

number of samples increases, the peak of AS becomes closer to 0. 

 

FIGURE 7 Convergence curves for Example 11 with error band of MLFP 1-10. 
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FIGURE 8 Probability density function of Euclidean distance from sampling points to 

rigorous model-based solution for Example 11. 
 The comparative results between TRFs 1-4 and MLFPs 1-10 are illustrated in FIGURE 

9 where the dashed line represents the optimal solution from the rigorous models solved by 

IPOPT81. Compared to TRFs1-4, MLFPs 7-8 achieve the same optimal ROI of 121.1 but 

with significantly fewer function evaluations. FIGURE 10 presents the optimization results of 

TRFs 1–4 and MLFPs 1–10 with 10 runs. As shown in FIGURE 10 (a), MLFPs 6-10 are 

much more stable than MLFPs 1-5 with the same function evaluations, indicating that 

MLFPs with the proposed adaptive sample strategy is superior to those with LHS. When the 

number of samples increases, the stability of MLFPs 6-10 increases, evidenced by the 

reduced variance in optimized ROI across multiple runs. From FIGURE 9 (a) and FIGURE 



 

23 

10 (b), we can observe that both TRF-4 and MLFP-10 require similar function evaluations 

(915 vs. 1002) and the rigorous model-based optimal solution. However, MLFP-10 shows 

greater stability compared to TRF-4 due to the box height (Interquartile Range, IQR) and 

whisker difference of MLFP-10 are significantly narrower than TRF-4. 

 

FIGURE 9 ROI results for Example 11 from MLFPs and TRF1-4 on (a) no. of function 

evaluations of the black-box function and (b) objective function value. 
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FIGURE 10 Boxplot of best ROI for Example 11 from (a) MLFP1-10, and (b) TRF 1-4 and 

MLFP 7-10 with 10 runs. 

4.3 Example 12: Extractive distillation (ED) for toluene and n-heptane separation 

Process simulation-based optimization is a typical BBO problem involving expensive 

function evaluations or unknown functions. In this subsection, we test an example of 

extractive distillation to separate toluene form n-heptane using solvent phenol provided by 

Ma et al. (2022). The process flowsheet is provided in FIGURE S7 of the Supplementary 

Material. The process mainly consists of two columns. The first column (C1) is used to 

separate n-heptane, and the second column (C2) is used for separation of toluene form 

solvent phenol. The purity requirement for both products is not less than 0.98. All specific 

constraints and utility prices are referenced from Fan et al.53. The optimization problem using 
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the surrogate models mainly achieves the minimum operating cost by adjusting the amount 

of extractant, reflux ratio, and distillate flow rate, as shown in (PED). 

𝑚𝑖𝑛
𝐹,𝑟1,𝐷1,𝑟2,𝐷2∈ℝ

𝑐ℎ𝑢(𝑄2 +𝑄4) − 𝑐𝑐𝑢(𝑄1 + 𝑄3)

𝑠. 𝑡. (𝑥𝑛, 𝑥𝑡, 𝑄1, 𝑄2, 𝑄3, 𝑄4) = 𝑠(𝐹, 𝑟1, 𝐷1, 𝑟2, 𝐷2)

0.98 ≤ 𝑥𝑛 ≤ 1

0.98 ≤ 𝑥𝑡 ≤ 1

(𝐏𝐄𝐃) 

where, 𝑐ℎ𝑢 and 𝑐𝑐𝑢 is the cost coefficients for cold and hot utilities; 𝑄1 and 𝑄3 are duties 

of condensers C1 and C2, 𝑄2 and 𝑄4 are duties of reboilers C1 and C2, kW; 𝐹 is the 

mass flow of solvent phenol, kg·hr-1; 𝑟1 and 𝑟2 are the reflux ratio of C1 and C2; 𝐷1 and 

𝐷2 are the distillate flow of C1 and C2; 𝑥𝑛 and 𝑥𝑡 are the mole fraction of n-heptane in C1 

distillate and toluene in C2 distillate; 𝑠(⋅) is the surrogate model for extractive distillation 

process. The variable range and parameter values are obtained from Fan et al. 53. 

 According to Ma et al.24,70, the surrogate models constructed using either ReLU neural 

networks or ALAMO exhibit great relative errors ranging from 0.2% to 25%. Despite 

employing complex basis functions, these models still fail to fully capture behaviors of the 

process system due to inherent limitations in their nonlinear representation capabilities. We 

use the proposed MLFP framework to generate a surrogate model for the entire process 

where 1014 valid sampling points are generated. The performance of the constructed 

surrogate models on the test set is provided in FIGURE S8 of the Supplementary Material. 

Each graph exhibits a correlation coefficient of 1.00 (R2  1) and relative errors are no 

greater than 0.56%, indicating excellent predictive performance.  

 We then use MLFP to solve the PED problem. The convergence curves of the objective 

value, and n-heptane and toluene molar fractions are depicted in FIGURE 11. As illustrated 

in FIGURE 11, the predicted objective value, and n-heptane and tolumen molar fractions 

from the surrogated models are in good agreement with those validated from Aspen rigorous 

simulation, indidating the high model prediction accuracy. The best energy cost is 134.60 

$ hr−1. The achieved purities of n-heptane and toluene products are 0.98 and 0.98 
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respectively, which satisfy the purity requirements. 

 

FIGURE 11 Convergence curves for Example 12 where (a) objective values, (b) n-heptane 

molar fraction in the top distillate of C1 and (c) toluene molar fraction in the top distillate of 

C2. 

 To further illustrate the capability of the proposed MLFP framework, we also use 

genetic algorithm (GA) 82, particle swarm optimization (PSO)82 to solve problem PED where 

the surrogate model is obtained from the proposed MLFP framework. The reported network 

structure with the highest accuracy in Ma et al.70 is also used to develop ReLU NN by using 

the sampling points generated from LHS, which is then reformulated into an MILP problem 

and optimized by Gurobi83. All optimization results using the surrogate models are validated 

in Aspen Plus. The validated results are provided in Table 1. The best results from the 
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adaptive sampling Bayesian optimization (ASBO-I)53 are reported by Tian et al. and also 

provided in Table 1 for comparison. 

TABLE 1 Validated results for Example 12 from different optimization strategies. 

Algorithms 
Objective 

($·hr−1) 

Purity No. of 
samples/Initial 

points 

Optimization 
time 
(sec) 

Total 
time 
(min) 

xn xt 

Surrogate-GA 154.77 0.99 0.98 2400 3.59 62.14 

Rigorous-GA 177.07 0.98 1.00 - 2898.55 48.31 

Surrogate-PSO 134.73 0.98 0.98 2400 3.94 62.15 

Rigorous-PSO 151.60 0.98 0.98 - 2919.47 48.66 

SQP (Aspen) 231.18 0.99 0.99 1 Failed - 

ASBO-I (best) 248.60 valid valid 160 - - 

ReLU NN 154.13 0.96 0.96 2400 2.57 79.11 

MLFP 134.60 0.98 0.98 2400 0.99 62.08 

 From TABLE 1, it is shown that SQP (Aspen) fails to converge and halts at the initial 

point provided. ASBO-I requires the fewest samples, but its best objective is 248.60 $·hr−1, 

which is 84.7% higher than that of 134.60 $ ·hr−1 obtained from MLFP. Although the 

reformulated ReLU NN using the network structure reported in Ma et al.70 obtains the best 

objective of 154.13 $·hr−1, which is lower than ASBO-I, but still higher than that of 134.60 

$·hr−1 from MLFP. Moreover, the purity of n-heptane and toluene is 0.96, which does not 

meet the purity requirements. In contrast, MLFP exhibits the best performance, generating 

the lowest objective value of 134.60 $·hr−1 and all purity constraints are met. 

4.4 Example 13: CO2 capture from biogas (CCB) 

Removing CO2 from biogas is an important step in producing biofuels as it can increase the 

concentration of CH4, thereby enhancing the quality of biogas as an energy carrier. Purified 

biogas, commonly known as biomethane or renewable natural gas (RNG), can be used for 

various purposes, such as direct combustion to generate heat or electricity, as vehicle fuel, 

or injection into natural gas pipelines. 

This example is from Xu et al.80 where n-methyldiethanolamine (MDEA) is used as the 

solvent. The reactions between CO2 and MDEA take place in the absorber, as given in 

Eq.(2). The carbonic acid undergoes thermal decomposition in the stripper, as illustrated in 
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Eq.(3). 

CO2 + 𝑅2NCH3 + 𝐻2𝑂
  
→  𝑅2NCH3𝐻

+ + HCO3
−, (2) 

𝑅2NCH3𝐻
+ + HCO3

−
 𝛥 
→   𝑅2NCH3 + CO2 ↑ +H2𝑂. (3) 

The desorbed MDEA is circulated in the system as the regenerated solvent. The products 

CH4 and CO2 will carry a small amount of water vapor and MDEA, so it is necessary to 

supplement the solvent appropriately. The entire flow diagram can be found in FIGURE S9 

of the Supplementary Material. We employ Python to externally call Aspen's Application 

Programming Interface (API) for direct iteration, ensuring that the loss remains consistent 

with the replenished solvent. 

 We treat the entire process as a black box. The surrogate model is constructed by 

using the proposed MLFP framework to predict CH4 molar fraction in the vapor outlet stream 

of Flash1, CO2 mole fraction in the vapor outlet stream of Flash2, fresh MDEA required, and 

duties of reboiler based on the Desorber. We then establish the optimization problem, which 

is denoted as (PCCB). The objective is to minimize total annual cost, including utility costs, 

annualized equipment investment costs, and supplementary MDEA costs. The purified 

biogas must achieve a minimum CH4 purity of 0.97, while the CO2 content in the regenerated 

MDEA solution should be less than 0.1. 

𝑚𝑖𝑛
𝐹𝑀𝐷𝐸𝐴
𝑅 ∈ℝ

𝑁𝐴,𝑁𝐷∈ℝ

𝐻𝑟𝐹𝑀𝐷𝐸𝐴
𝑆 − 𝑐𝑐𝑢𝑄𝑐 + 𝑐ℎ𝑢𝑄ℎ +

[𝑐𝑀𝐷𝐸𝐴𝐹𝑀𝐷𝐸𝐴
𝑅 +𝑐𝑠(𝑁𝐴+𝑁𝐷)]

𝑌𝑟

𝑠. 𝑡. (𝑥𝐶𝐻4 , 𝑥𝐶𝑂2 , 𝐹𝑀𝐷𝐸𝐴
𝑆 , 𝑄𝑐, 𝑄ℎ) = 𝑠(𝐹𝑀𝐷𝐸𝐴

𝑅 , 𝑁𝐴, 𝑁𝐷)

0.97 ≤ 𝑥𝐶𝐻4 ≤ 1

0 ≤ 𝑥𝐶𝑂2 ≤ 0.1

2.7 ≤ 𝐹𝑀𝐷𝐸𝐴
𝑅 ≤ 5

3 ≤ 𝑁𝐴 ≤ 5

3 ≤ 𝑁𝐷 ≤ 11

𝑁𝐴, 𝑁𝐷 ∈ ℝ

. (𝐏𝐂𝐂𝐁) 

where, 𝐻𝑟 is the annual operating time, set to 8000 hours; 𝑌𝑟 is the period of depreciation, 

set to 10 years; 𝑐ℎ𝑢 and 𝑐𝑐𝑢 is the energy cost parameters for cold and hot utilities, set to 



 

29 

20 and 80 $·kW -1·yr-1 84; 𝑐𝑀𝐷𝐸𝐴 is the price of MDEA, set to 13000 $·ton-1; 𝑐𝑠 is the price 

for each column stage, set to 8508 $ 85,86; 𝑄𝑐 and 𝑄ℎ are cooling and heating utilities of 

the whole system, kW; 𝐹𝑀𝐷𝐸𝐴
𝑅  is the mass flow of recycled MDEA, ton·hr-1; 𝐹𝑀𝐷𝐸𝐴

𝑆  is the 

mass flow of supplementary MDEA, ton ·hr-1; 𝑁𝐴  and 𝑁𝐷  are the number of stages of 

absorber and desorber, which is assumed to be continuous; 𝑥𝐶𝐻4and 𝑥𝐶𝑂2 are the mass 

fraction of CH4 and CO2 in system outlets; 𝑠(⋅) is the surrogate model for the entire process 

simulation. 

 The performance of the constructed surrogate model on the test set is shown in 

FIGURE S10 of the Supplementary Material, and the relative error on the test set of all 

predicted outputs is less than 0.1%. The convergence curves for the objective function value, 

CH4 mass fraction in the purified biogas and CO2 mass fraction in the recycled lean MDEA 

when solving problem PCCB are illustrated in FIGURE 12. As shown in FIGURE 12, the 

dash line representing the predicting values overlaps with the solid line representing the true 

values. In other words, the prediction values well match the validated values from Aspen 

Plus, indicating the high accuracy of the constructed surrogate model. The best annual cost 

of 2.55×105 $·yr−1 is obtained within 0.2 s. The mass fraction of CH4 in the purified biogas is 

0.97, which satisfied the purity requirement after validation. Although the number of stages 

in the absorber and stripper is assumed to be continuous without integrality constraints, the 

number of stages of both columns is 3 in the final best solution, which is coincidentally 

integer. 
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FIGURE 12 Convergence curves for Example 13 (a) objective function value; (b) mass 

fraction of CH4 in the purified biogas, and (c) mass fraction of CO2 in recycled lean MEDA. 

5. Conclusion 

A machine learning powered feasible path (MIFP) optimisation framework integrated with 

adaptive sampling was proposed for solving general black-box optimisation (BBO) problems. 

Through adaptive sampling, the number of samples required to construct the surrogates by 

machine learning algorithms is significantly reduced, as the proposed strategy could filter 

out a substantial portion of infeasible samples and automatically identify promising regions 

that were potentially optimal. By incorporating feasible path method, MLFP managed to 

avoid the substantial brainy/nonlinear terms, that typically arise from the full-space algebraic 

formulations of machine learning models, ensuring the rapid convergence.  
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 Computational studies demonstrate that the proposed framework was capable of 

constructing surrogate models and converging to solutions around the KKT point in Example 

1-11, even with a limited number of samples. Compared with the state-of-the-art algorithms, 

MLFP shows similar performance to TRFs 1-4 for Example 6-10, but requires fewer 

evaluations; For Example 12, the optimal objective value obtained with MLFP is 84.7% lower 

than the best result of ASBO-I from its 10 runs. Moreover, multiple independent runs exhibit 

similar performance, indicating strong robustness of the proposed framework. We will 

continue to explore applications of MLFP for global optimisation of NLP and MINLP 

problems in our future research. 

Supporting information 

Additional supporting information can be found online in the Supporting Information section 

at the end of this article. Supplementary Data for this paper is available at 

https://data.mendeley.com/preview/rk6jn8wg55/2. The raw data set sampled from 

Examples are provided in Data A as a .zip file. The Aspen Plus simulations of Example 12 

and 13, the EO model of Example 11, and the programs to optimize the EO model of 

Expamle11 and the ReLU neural network model of Example 12 are provided in Data B as 

a .zip file. The neural network surrogate models for all Examples are provided in Data C as 

a .zip file. The other supplementary information is provided in Supplementary Material as 

a .docx file. An available example code of proposed algorithm is provided at 

https://github.com/ZixuanChang/MLSQP . 
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S1. Latin hypercube sampling and adaptive sampling 

We use an illustrative example to compare the performance of Latin hypercube sampling 

(LHS) and the proposed adaptive sampling strategy (AS). In this example, the objective 

function is six-hump camel function (see Eq.(S1)), which is a two-dimensional non-convex 

function with 2 global minima −1.0316 at (0.0898, −0.7126) and (−0.0898, 0.7126). The 

function is evaluated within [−1,1]. To enhance the generality of the example, a constraint 

𝑥2 − 𝑥1 ≤ 0 is added. The objective function and constraint are both considered as black-

box functions. 

 ( ) ( )
4

2 2 2 21
1 2 1 1 1 2 2 2, 4 2.1 4 1

3

x
f x x x x x x x x

 
= −  + + + − +  
 

 (S1) 

By employing the two-stage training strategy presented in FIGURE 2, AS first collects a 

small amount of samples (e.g., 50) by LHS, and a support vector machine (SVM) classifier 

is trained to approximate 𝑥2 − 𝑥1 ≤ 0. Due to the small number of sample points, the SVM 

classifier may incorrectly classify feasible regions as infeasible. We then extract the support 

vectors of the pre-trained SVM and forcefully designate them as feasible points to train a 

more conservative SVM. The spatial distribution of the samples in the 𝑥1 − 𝑥2 plane from 

LHS and AS is presented in FIGURE S1. As shown in FIGURE S1, LHS sampling points 

contain 51.3% feasible points, while AS contains 91.23%, which shows that AS can 

effectively reduce the infeasibility of sampling points. 

 

 
FIGURE S13 Sampling results of (a) AS and (b) LHS where red points reperesent 

infeasible points, green points denote feasible points, white points reperesent initial LHS 

points for AS, red solid line represents 𝑥1 ≤ 𝑥2 plane, white dashed line represents SVM 

classifier. 
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S2. Surrogates with derivatives 

Several machine learning algorithms such as decision tree, support vector regression 

machine, neural networks, etc., can be used to develop surrogate models for black-box 

functions. In the following, they are introduced, and their derivatives are also explained. 

S2.1. Decision Tree (DT) 

Various forms of decision trees have been widely used as surrogate models in optimization1–

3. In the early stage, the decision boundaries of decision trees are univariate and parallel to 

the coordinate axes, using the mean as the predictive model. Subsequently, decision trees 

with linear predictive models1 are developed. In recent studies, decision trees employ linear 

hyperplanes as decision boundaries and use arbitrary functions as predictive models to fit 

sample data4. 
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FIGURE S14 Decision tree with (a) single variable decision boundary and mean prediction model, 
(b) single variable decision boundary and linear prediction model as well as (c) linear hyperplane 

decision boundary and arbitrary prediction model. 

 
In this work we do not require the specific form of the decision boundary. Instead, we require 

the predictive model in each leaf is twice differentiable and the second-order derivatives are 

not all equal to zero. Considering the single-variable decision boundary can be regarded as 

a special form of linear decision boundary, the generalized algebraic formulation can be 

stated as follows, 

 ˆ ( )DT

i
y p x=  , ,

i
x i    (S2) 

 ( ) ( ) : , ; : ,n n

j j i j j ii
x a x b j L L x a x b j R L=          (S3) 

where ℒ is the set of leaves; 𝑦̂𝐷𝑇 is the predictive value of decision tree, 𝑥 is the input 
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feature; 𝐿𝑖  represents the leaf node 𝑖 , 𝑗  represents the branch node; 𝑝𝑖(∙)  is the the 

predictive model at 𝐿𝑖. For a binary tree, the path from the root to the leaves exists and is 

unique. For branch node 𝑗 in the path from the root to leaf 𝐿𝑖, as is shown in FIGURE S15 

(a), if 𝑥 satisfies 𝑎𝑗
⊤𝑥 ≤ 𝑏𝑗, then the node 𝑗 belongs to 𝐿(𝐿𝑖), otherwise belongs to 𝑅(𝐿𝑖). 

𝒫𝑖 represents the polyhedron as is stated in Eq.(S3). 
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FIGURE S15 (a) The path from the root to the leaves and (b) the boundary prediction functions’ 

recognition. 

 
For those points that do not exactly satisfy the equality boundary, the first- and second-order 

derivatives are as follows: 

 ( )ˆ ,
x DT x i i
y p x x i =      (S4) 

 ( )2 2ˆ ,
x DT x i i
y p x x i =      (S5) 

For those points that exactly satisfy the equality boundary, they are non-differentiable. 

Therefore, the minimum norm subgradient is used in place of the first-order derivative: 

 ( )  
( ) ( )2

ˆ min
i

i i

DT i x i j j

i j L L R L

y p x x a x b





 =   =  (S6) 

Then, the finite difference method is employed to estimate the second-order derivative and 

construct an approximate Hessian matrix. The algorithm for boundary nodes’ identification 

and derivatives’ calculation of decision tree is shown in ALGORITHM S1. 
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ALGORITHM S1 Algorithm for boundary nodes’ identification and derivatives’ calculation of 
decision tree 
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S2.2 Support Vector Regression Machine (SVR) 

SVR is the application of Support Vector Machine (SVM) in regression problems. SVR seeks 

to identify a function that best fits the data while maintaining a certain tolerance for error, 

which is achieved through the introduction of an ε-insensitive loss function5. This model is 

especially effective for handling high-dimensional data and can construct non-linear decision 

boundaries in the feature space when kernel methods are utilized. 

The algebraic form of a kernel SVR is shown in Eq.(S7): 

 ( ) ( )*ˆ ,
SVR i i

i

i
y x x  = − +   (S7) 

where 𝑦̂𝑆𝑉𝑅 is the predictive value of SVR, 𝛼𝑖 and 𝛼𝑖
∗ is the Lagrange multiplier, 𝛽 is the 

bias term, 𝑥𝑖  is the sample 𝑖  in the training set, 𝑥  is the input feature and 𝒦(∙)  is the 

kernel function. 

And the derivatives are as shown in Eqs.(S8) and (S9). 

 ( ) ( )* ,ˆ
x SVR i i x i

i

xy x  = −    (S8) 

 ( ) ( )2 * 2ˆ ,
x SVR i

i

ii x
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S2.3 Neural Networks (NN) 

Neural networks serve as the cornerstone of deep learning technology, and their 

applications within chemical engineering are expanding rapidly. This growth is primarily 

attributed to neural networks' robust nonlinear modeling capabilities and their proficiency in 

processing intricate data. 

By leveraging these strengths, neural networks enable advanced process optimization, 

predictive maintenance, and innovative product development in the chemical industry, 

thereby transforming traditional practices with more efficient and intelligent solutions. 

The most basic NN model is the multi-layer perceptron (MLP). The algebraic form of MLP 

with L  hidden layers can be expressed by the following composite function: 

 
( ) ( ) ( ) ( ) ( ) ( )1 1 1ˆ L L L

MLP
y f f f x 

+
=   (S10) 

Where, 𝑦̂𝑀𝐿𝑃  is the predictive value of MLP, 𝑓(𝑛)(𝑧) = 𝑊(𝑛)𝑧 + 𝑏(𝑛) , 𝜙(𝑛)(∙)  is the 

activation function of the n-th layer. 𝑊(𝑛) and 𝑏(𝑛) represent the weights and biases from 

layer 𝑛 − 1 to layer 𝑛, respectively. 

According to the chain differentiation rule, we have: 
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Specifically, for every layer we have: 
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Therefore, the first-order derivative can be expressed as follows: 
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To simplify the expression of second-order derivative of MLP, we assume that the predicted 

output value 𝑦̂𝑀𝐿𝑃 is a scalar, and the conclusions obtained can be easily extended to high-
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dimensional output neural networks. 

From the output layer to the hidden layer 𝐿, we have: 
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For hidden layer l  we have: 
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where, 
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By applying Eqs.(S15)-(S18) and performing layer-by-layer recursion, we can obtain the 

second-order derivative of the MLP. Obviously, the algebraic symbolic differentiation 

approach yields expressions that are overly complex and challenging to implement. 

Therefore, we provide an alternative method: reverse-mode automatic differentiation (AD)6,7. 

Different from central differencing and other numerical differentiation techniques, automatic 

differentiation provides exact derivatives while significantly reducing computational 

complexity. 

Assuming we have a neural network as shown in FIGURE S16 (a), and the forward process 

can be transformed into a computational graph as is shown in FIGURE S16 (b). Here, 𝑥𝑚 

is the input feature of NN, 𝑦  is the prediction value. 𝑣𝑖  and 𝑣𝑘  represent the linear 

transformation in NN, for example 𝑣1 = 𝑤1 ⋅ 𝑥1 , where 𝑤  represent the weights. 𝑝𝑗 

represents the activation function, for instance 𝑝1 = 𝜙(𝑣1 + 𝑣4 + 𝑏) , where 𝑏  represents 

the bias. By transforming NN into computational graph, the forward trace can be distinctly 

presented and the backward trace is used for calculating first-order derivative. Similarly, this 

process can also be transformed into a computational graph used for calculating second-
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order derivatives. In this work, we use PyTorch8 to easily achieve automatic differentiation 

without the tedious derivation for algebraic expressions. 
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FIGURE S16 An illustrative example of NN with its (a) structure, (b) computational graph and (c) 

reverse mode AD trace for first-order derivative. 

S 2.4 Ensemble Learning 

For some special tasks, a single learner may not perform well. Therefore, the multiple base 

learners need to be integrated. The weighting method is the most commonly used ensemble 

approach in regression tasks: 

 ˆ ˆ
E i ii

y y=   (S19) 

Where, 𝑦̂𝐸 is the prediction value of ensemble learner, 𝑦̂𝑖 is the prediction value of base 

learners and 𝜔𝑖 is the weights. The derivatives of integrated learner are also the weighted 
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derivatives of the base learner. 

The methods outlined above enable the provision of necessary derivative information while 

preserving the powerful fitting and rapid inference capabilities of machine learning models, 

thereby facilitating efficient optimization. 

S2.5 Gaussian process regression (GPR) 

GPR, a non-parametric probabilistic regression method, is commonly employed in BO. 

Given an observation point 𝑥∗ , if we consider the simple special case where the 

observations are noise free, GP predicts a random variable whose probability distribution 

follows a normal distribution 𝒩 . According to definition, the training label 𝑌  and the 

predicted variable *y  follow the following distribution: 

 ( )( )20, , nK X X IY +   (S20) 

 ( )* * *0, ,y x x     (S21) 

where 𝜎𝑛
2 2

n   represents the variance of noise, 𝐼  is the identity matrix, 𝐾(∙)  is the 

covariance matrix, 𝒦(∙) is the kernel function. The joint probability distribution of 𝑌 and *y  

is a joint normal distribution in the following form: 

 
( ) ( )

( ) ( )
*

**

2

* *

, ,
0,

, ,

n
Y K X X I K X x

K x X xy x

  +
   



 


 
. (S22) 

GPR uses the expectation of random variables for prediction and measures uncertainty 

using variance: 

 ( ) ( ) ( )
1

* * *

2,ˆ , ny x K x X YK X X I
−

 + = =   , (S23) 

 ( ) ( ) ( ) ( ) ( )2

* ** * *

1
2 , , , ,nx x K x X K X X I K x Xx 

−

−  + =  . (S24) 

In the BO framework, the problem of maximizing the acquisition function should be resolved 

before each sampling: 
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( ) ( )( )

( )
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n

2

* arg max ,

s.t. 0

0
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x Aq x x

h x

g x

 


=

=



 (MAF) 

where 𝐴𝑞(∙) is the acquisition function, such as the upper confidence bound (UCB) and 

expected improvement (EI); ℎ(∙)  is the equality constraints and 𝑔(∙)  is the inequality 

constraints. It should be noted that if the constraint function is also a black-box function, we 

can use any of the models mentioned above for surrogate9 and then optimize using the 

proposed algorithm. Therefore, the derivatives of 𝜇(𝑥)  and 𝜎2(𝑥)  are required, and 

derived as follows: 

 ( )
( )

( )
1

2,
, nx K X YX

K x X

x
Ix 

−
   += 

 (S25) 

 ( )
( ) ( )

( ) ( )
1

2 2,2
, ,

,nx

x x x X
K X X I x X

K
x K

x x


− 
  − +=    

 (S26) 

If x  is an nx-dimensional vector, and there is a total of nt pieces of training data, then: 
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. (S27) 

The second-order derivative takes the following form: 

 ( )
( ) ( )

( )
,

2

2 2
1

2 ,
,x i j

i j

n

i j

x K x X
x YK

x x
X X

x x
I




− 
    = =     

+


 (S28) 

 ( )
( ) ( ) ( ) ( )

( )
2 2

2 2

,

, , , ,
2 2 ,x i j

i j i j i j

x x K x X K x X K x X
x A AK x X

x x x x x x


   
  = − −       

 (S29) 

where 𝐴 = [𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑌. 
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S3. SQP-driven feasible path algorithm 

Once the derivative information is obtained, the SQP algorithm can be easily applied to 

surrogate assisted BBO problems. The Lagrangian function of (P2) is shown as Eq.(S30): 

 ( )( ) ( )( ) ( )( ) ( )( ), , , , , ,L f= + −x s x λ μ x s x λ h x s x μ g x s x  (S30) 

where 𝝀  and 𝝁  are the Lagrange multipliers for equality and inequality constraints, 

respectively. 

In this work, we take 𝐇𝑘: = ∇𝐱
2𝐿(𝐱𝑘, 𝐬(𝐱𝑘), 𝛌𝑘, 𝛍𝑘) as the Hessian matrix of the Lagrangian 

function at 𝐱𝑘 , and 𝐁𝑘: = 𝐇𝑘 + 𝐄𝑘  as the modified Hessian matrix. 𝐄𝑘  denotes the 

minimum modification under the Frobenius norm. In order to obtain 𝐄𝑘, first perform spectral 

decomposition on 𝐇𝑘, so that 𝐇𝑘 = 𝐐𝚲𝐐⊤, where 𝐐 is a matrix composed of eigenvectors 

of 𝐇𝑘 and 𝚲 is a diagonal matrix composed of eigenvalues of 𝐇𝑘. In this way, we take 𝛿 

as a constant approaching 0, and by modifying the eigenvalues of 𝐇𝑘 , we adjust all 

eigenvalues who are smaller than 𝛿 to 𝛿, thus ensuring the positive definiteness of 𝐁𝑘. 

Therefore, we can define 𝐄𝑘: = 𝐐diag(𝜏𝑖)𝐐
⊤, where 

𝜏𝑖 = {
0 𝜎𝑖 > 𝛿

𝛿 − 𝜎𝑖 𝜎𝑖 < 𝛿
,  

and 𝜎𝑖 represents the eigenvalues of 𝐇𝑘. 

For surrogates with second-order derivative constant at 0, we apply BFGS to approximate 

𝐇𝑘. The BFGS update formula10,11 is as follows: 
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 (S31) 

where, Δ𝐿:= ∇𝐱𝐿(𝐱
𝑘+1, 𝐬(𝐱𝑘+1), 𝛌𝑘+1, 𝛍𝑘+1) − ∇𝐱𝐿(𝐱

𝑘, 𝐬(𝐱𝑘), 𝛌𝑘, 𝛍𝑘) , Δ𝐱:= 𝐱𝑘+1 − 𝐱𝑘 , and 

𝐁0 = 𝐈. 

In this work, we use SQP to solve a surrogate-assisted BBO problem, who expands the 

original problem into a convex quadratic programming problem through Taylor expansion at 

each iteration point and conduct line search to merit function along the direction obtained 
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from problem (QP). SQP is a type of Newton's method that can effectively handle both small 

and large-scale nonlinear constrained optimization problems. It can be integrated into line 

search or trust region frameworks. In this work, we use the line search SQP. Perform 

second-order Taylor expansion on the Lagrangian function of (P2) at 𝐱𝑘  and first-order 

Taylor expansion on the constraints to obtain the following quadratic programming problem 

(QP): 

𝑚𝑖𝑛
𝐱∈ℝ𝑛

1

2
𝐝𝑘
⊤
𝐁𝑘𝐝𝑘 + 𝛻𝑓(𝐱𝑘, 𝐬(𝐱𝑘))

⊤

𝐝𝑘

s.t. ∇𝐡(𝐱𝑘, 𝐬(𝐱𝑘))
⊤

𝐝𝑘 + 𝐡(𝐱𝑘, 𝐬(𝐱𝑘)) = 0

∇𝐠(𝐱𝑘, 𝐬(𝐱𝑘))
⊤

𝐝𝑘 + 𝐠(𝐱𝑘, 𝐬(𝐱𝑘)) ≤ 0

. (𝐐𝐏) 

where 𝐝𝑘: = (𝐱 − 𝐱𝑘) is the search direction of (P2), and ∇𝑓, ∇𝐡 and ∇𝐠 are the gradients 

of  𝑓 , 𝐡  and 𝐠  respectively. The derivative with respect to 𝑥𝑖  is 𝛻𝑥𝑖𝐹(𝐱, 𝐬(𝐱)) =
𝜕𝐹

𝜕𝑥𝑖
+

∑
𝜕𝐹

𝜕𝑠𝑗(𝒙)
𝑚
𝑗=1

𝜕𝑠𝑗(𝐱)

𝜕𝑥𝑖
, where 𝐹 can be any one of 𝑓, ℎ and 𝑔. 

After solving the problem (QP), we obtain the search direction 𝐝𝑘, multipliers 𝛌𝑞𝑝
𝑘  and 𝛍𝑞𝑝

𝑘  

of problem (QP) at 𝐱𝑘.Then, line search will be executed on the merit function and the step 

size 𝛼  will be determined through backtracking method. In next iteration, 𝐱𝑘+1 = 𝐱𝑘 +

𝛼𝐝𝑘 and 𝐇𝑘+1: = ∇𝐱
2𝐿(𝐱𝑘+1, 𝐬(𝐱𝑘+1), 𝛌𝑞𝑝

𝑘 , 𝛍𝑞𝑝
𝑘 ) , according to the relationship as the 

equivalence between SQP and Newton’s method 10. The (QP) subproblem is solved by 

utilizing the qpsolver 12 to call the open-source quadratic programming solver proxqp13,14. 

In this work, the ℓ1 merit function, defined as Eq.(S32), is used to evaluate convergence 

criteria: 

 ( ) ( ) ( ) ( ) ( ) ( )1 ; ,k k k k k k k k

qp qp f
−

= + +x λ μ x ρ h x ν g x  (S32) 

where, 𝐠(𝐱𝑘)−: = max(0, −𝐠(𝐱𝑘)), and the penalty parameters are defined as follows15: 

 

1

max ,
2

k k

qpk k

qp

− +
 =
 
 

ρ λ
ρ λ   (S33) 
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1
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2

k k

qpk k

qp

− +
 =
 
 

ν μ
ν μ   (S34) 

Given the ℓ1 merit function being not differentiable everywhere, the Eq.(S35) describes the 

directional derivative of 𝜙1(𝐱
𝑘; 𝛌𝑞𝑝

𝑘 , 𝛍𝑞𝑝
𝑘 )  along the direction 𝐝𝑘  generated by the SQP 

subproblem. 

 ( )( ) ( ) ( ) ( ) ( ) ( )1 ; , ;k k k k k k k k k k

qp qpD f
−

=  − −x λ μ d x d ρ h x ν g x  (S35) 

Lemma 1. Let 𝐝𝑘, 𝛌𝑞𝑝
𝑘  and 𝛍𝑞𝑝

𝑘  be generated by problem (QP). Then the directional derivative of 

𝜙1(𝐱
𝑘; 𝛌𝑞𝑝

𝑘 , 𝛍𝑞𝑝
𝑘 ) in the direction 𝐝𝑘 satisfies: 

 ( )( )1 ; , ; 0k k k k

qp qpD  x λ μ d   (S36) 

Proof. By applying Taylor’s theorem to f , h  and g , we obtain: 
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 (S37) 

where 𝑓𝑘: = 𝑓(𝒙𝑘) , 𝒉𝑘: = 𝒉(𝒙𝑘) , 𝒈𝑘−: = 𝑚𝑎𝑥(0,−𝒈(𝒙𝑘)) , the positive constant 𝛾 bounds 

the second-derivative terms in objective function and constraints, and 𝛼 ∈ (0,1) is the step 

length. 

According to Karush-Kuhn-Tucker (KKT) condition16 of subproblem (QP), we have that 𝒉𝑘 +

𝛼(𝛻𝒉𝑘)⊤𝒅𝑘 = 0 and 𝒈𝑘 + 𝛼(𝛻𝒈𝑘)⊤𝒅𝑘 ≤ 0, so for 𝛼 ≤ 1 we have that 
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Similarly, the following lower bound can be obtained: 

( ) ( ) ( )
2
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1 1 2
; , ; ,x d λ μ x λ μ d h ρ g ν d
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  

 (S39) 

The directional derivative of ∅1 in the direction 𝐝𝑘 is given by Eq.(S32) by taking the limit. 

Due to 𝐝𝑘 satisfying the KKT condition of the subproblem (QP), we can reformulate the 

directional derivative as: 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
1

1 1

1 1

; , ;

  

x λ μ d d B d d h λ d g μ

ρ h x ν g x
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k k k k k k k k k k k k k
qp qp qp qp

k k k k

k k k k k k k k k

qp qp

k k k k k k k k k

qp qp
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+ − +

+ − +

= −   +    + 

− −
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 (S40) 

Since 𝑩𝑘 is positive definite, and according to Eq.(S33) and Eq.(S34), we have 𝝆𝑘 ≥ 𝝀𝑞𝑝
𝑘+1 

and 𝝂𝑘 ≥ 𝝁𝑞𝑝
𝑘+1, then the Lemma 1 has been proven.  

Lemma 1 indicates that if 𝐝𝑘 is the KKT point of problem (QP) and 𝐁𝑘 is positive definite, 

then the merit function decreases. This implies that in each iteration, either the infeasibility 

of the original problem is alleviated, or the value of the objective function is reduced, or both 

situations occur simultaneously. 

The Armijo condition guarantees a sufficient decrease of the merit function: 

( ) ( ) ( )( )1 1 1; , ; , ; , ;k k k k k k k k k k k

qp qp qp qp qp qpD    + − x d λ μ x λ μ x λ μ d  (S41) 

Where 𝜂 ∈ (0,0.5) is a hyper-parameter. However, it is possible that no step length 𝛼 can 
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satisfy the Armijo condition, regardless of how small it is. Under such circumstances, we 

accept the last 𝛼 when the maximum number of line searches has been reached. 

For practical engineering problems, due to numerical stability and other factors, the KKT 

conditions as criteria may be too strict17, making the algorithm difficult to achieve 

convergence. Therefore, based on previous research15,18,19, we check whether the following 

criteria are met after every line search: 

 ( ) ( )
1 1

k k k k tol 
−

+ + + h x d g x d  (S42) 

 ( ) ( )k k kf f tol+ − x d x   (S43) 

 
2

k told   (S44) 

where, 𝑡𝑜𝑙  represents the convergence tolerance. The solution is considered optimal if 

Eqs.(S42), (S43)or Eqs.(S42), (S44) are satisfied. The satisfaction of Eq.(S42) indicates 

that the optimal solution is feasible. The satisfaction of either Eq.(S43) or Eq.(S44) suggests 

that there is little potential for further decrease in the objective function. 

The SQP-driven feasible path algorithm for surrogate-assisted BBO is as shown in 

ALGORITHM S2. 
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ALGORITHM S2 SQP-Driven feasible path algorithm for surrogate-assisted BBO. 
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S4. Examples 1-6 

The sampling range of the six test functions in Examples 1-6 is selected as [−2, 2], with a 

training set sample size of 2000, a validation set of 50, and a test set of 200. 

TABLE S2 Test functions for Examples 1-6 

Example Dimension Expression 
Minimal 

value 

Minimum 

point 

1 10 ∑𝑥𝑖
2

10

𝑖=1

 0 (0,0,…,0) 

2 10 ∑𝑥𝑖
2

10

𝑖=1

+∑(𝑥𝑖 − 𝑥𝑖+1)
2

9

𝑖=1

 0 (0,0,…,0) 

3 2 
(4 − 2.1𝑥1

2 +
𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2

+ 4(−1 + 𝑥2
2)𝑥2

2 

−1.03 
(0.09,−0.71) 

(−0.09,0.71) 

4 2 0.5 +
𝑠𝑖𝑛2(𝑥1

2 − 𝑥2
2) − 0.5

[1 + 0.001(𝑥1
2 + 𝑥2

2)]2
 0 (0,0) 

5 5 1 +
1

4000
∑𝑥𝑖

2

5

𝑖=1

−∏𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

5

𝑖=1

 0 (0,0,0,0,0) 

6 5 

−20 𝑒𝑥𝑝

(

 −0.2√
1

5
∑𝑥𝑖
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(a) (b) (c)

(d) (e) (f)

 
FIGURE S17 Parity plots of (a) Sphere function, (b) Quadratic function, (c) Six hump camel function, (d) Schaffer function NO.2, (e) 

Griewank function and (f) Ackley function on the test set 
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S5. Examples 7-10 

In these examples, we employ 4 classic test functions as black-box, and compare the 

performance of MLFP and TRF on these functions. 

TABLE S3 Test functions for Examples 7-10 

Example Dimension Expression 
Minimal 

value 

Minimum 

point 

7 3 

−∑𝛼𝑖𝑒𝑥𝑝(−∑𝐴𝑖𝑗

3

𝑗=1

(𝑥𝑗

4

𝑖=1

− 𝑃𝑖𝑗)
2
) 

−3.8628 

(0.1146, 

0.5556, 

0.8525) 

8 4 
(𝑥1 + 10𝑥2)

2 + 5(𝑥3 − 𝑥4)
2 

+(𝑥2 − 2𝑥3)
4 + 10(𝑥1 − 𝑥4)

4 
0 (0,0,…,0) 

9 4 ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

4

𝑖=1

 0 (1,1,…,1) 

10 6 ∑(𝑥𝑖 − 1)
2

6

𝑖=1

−∑𝑥𝑖𝑥𝑖−1

6

𝑖=2

 −50 

𝑥𝑖
= 𝑖(7 − 𝑖)  

𝑓𝑜𝑟 𝑖

= 1,… ,6 

Note: 𝛼 = [1 1.2 3 3.2]𝑇, 𝐴 = [

3 10 30
0.1 10 35
3 10 30
0.1 10 35

], 

 𝑃 = 10−4 [

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

] 
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S6. Example 11: Williams-Otto process 

Heater

FEED:

FA + FB

FG

FR

FP

Fpurge

Decanter

SeparatorReactor
η

Feff

 
FIGURE 18 Diagram of Williams-Otto process. 

 
The Williams-Otto (WO) process within the reactor involves the following 3 

reactions20,21: 

 

1

2

3

r

r

r

A B

P E

G

C

B C

P C

+ ⎯⎯→

⎯+

+

⎯→ +

⎯⎯→

 (S45) 

All reactants involved are assumed to be fictitious components, and the mixture is 

considered to have a constant density of 𝜌 = 50 . The separation efficiency is also 

assumed to be fixed. Reactants A and B are introduced into the reactor to produce P 

with by-product C, E, and G. This stream is then sent to a decanter, where component 

G is removed. The remaining mixture is fed into a distillation column, with the desired 

product P obtained as the top distillate. A portion of the bottom stream is recycled back 

to the reactor to improve process efficiency. 

The full equation-oriented optimization formulation is presented as follows: 

Objective: 

 
2207 50 168 252 2.22 84 60

max 100%
600

sum

P purge A B eff GF F F F F F V
ROI

V





+ − − − − −
=   (S46) 

Kinetics: 

 

( )

( )

( )

9

1

12

2

15

3

5.9755 10 exp 120

2.5962 10 exp 150

9.6283 10 exp 200

A B

B C

P C

r T x x V

r T x x V

r T x x V







=  −

=  −

=  −

 (S47) 
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Reactor balance: 

 

( )

 

 

1

1 2

1 2 3

2

2 3

3

2 2

2

0.1 0.5

1.5

, , , , ,

, , ,

A A

eff A R

B B

eff B R

C C

eff R

E E

eff R

P E

eff R

G

eff

sum j

eff effi

j sum

eff eff j

F F F r

F F F r r

F F r r r

F F r

F F r r

F r

F F j A B C E G P

F F x j A B C P

= + −

= + − +

= + − −

= +

= + −

=

= 

= 



 (S48) 

Waste stream: 

 
G G

effF F=   (S49) 

Product stream: 

 
( )

0.1

1.1

P E

P eff eff

A B C E

purge eff eff eff eff

F F F

F F F F F

= −

= + + +
  (S50) 

Recycle stream: 

 
( )  

( )

1 , , ,

0.1 1

j j

R eff

P E

R eff

F F j A B C E

F F





= − 

= −
  (S51) 

Bound constraints: 

 
     

 

0.03,0.1 5.8,6.8 0,4.763

0 , 1 0,1

P

A B

V T F

F F F 

  

  
 (S52) 

Eq.(S46) -(S52) is the EO-based WO optimization problem. Establishing a surrogate 

model for Eq.(S46)-(S51) with the input of 𝒙 = [𝑉, 𝑇, 𝜂, 𝐹𝐴, 𝐹𝐵] and an the output of 𝒚 =

[−𝑅𝑂𝐼, 𝐹𝑃], it can be expressed as the following optimization problem: 

 ( )

5
min

s.t.

Eq.(S41)

ROI

s


−

=

x

y x   (S53) 
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S7. Example12: Extractive distillation for toluene and n-heptane separation 

C1 C2

H2

H1

H4

H3
FEED:

N-heptane + Toluene

SOLVENT:

Phenol

N-heptane 

 Phenol + Toluene

Toluene

Phenol 
 

FIGURE S19 Process flow diagram for separation of toluene form n-heptane using 
solvent phenol in Ma et al.’s work22. 

 

In this example, the sampling numbers for the training set, validation set, and test set 

were set to 2000, 200, and 1000, with 1014, 95, and 511 successful points, respectively. 

The multilayer perceptron (MLP) is employed as surrogate model in this case, who 

possesses four hidden layers with hidden layers 1-2 having 100 neurons and hidden 

layers 3-4 having 120 neurons. FIGURE S20 shows the performance of constructed 

model on test set. As is shown in FIGURE S8, the surrogate model can predict the 

output perfectly, since each graph exhibits a R of 1.00 and relative errors are no greater 

than 0.56%. Such results are highly encouraging for model validation and instill strong 

confidence in the models' reliability. 
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FIGURE S20 Parity plots of (a) mole fraction of n-heptane in C1 distillate, (b) mole fraction of toluene in C2 distillate, (c) condenser 

duty of C1, (d) reboiler duty of C1, (e) condenser duty of C2, and (f) reboiler duty of C2 on the test set 
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S8. Example 13: CO2 capture 

Absorber DesorberH4

H2

H3

H1

Flash1

Flash2

BIOGAS:
CH4 + CO2

SOLVENT:
MDEA + H2O

CH4

Recycled H2O

CO2

Recycled H2O

Recycled MDEA 

 

FIGURE S21 Process flow diagram of CO2 capture from biogas using aqueous 

MDEA 

 

The surrogate model for the entire process is also a MLP, possessing six hidden layers 

with 1-3 layers having 100 neural and 4-6 layer having 200 neural. The sampling 

numbers for the training set, validation set, and test set were set to 2000, 100, and 200. 

The performance on test set as is shown in FIGURE S22, where each graph exhibits 

a R of 1.00 and relative errors are no greater than 0.10%. 
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FIGURE S22 Parity plots of (a) supplementary MDEA, (b) cooling utility, (c) heating utility, (d) mass fraction of CH4 in the purified 
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biogas (e) mass fraction of CO2 in the mean MEDA, and (f) reboiler duty of column C2 
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