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ABSTRACT: Wet-process phosphoric acid production (WPAP) is
a crucial part of modern industry, and its optimization can enhance
production efficiency and enable precise utilization of ore
resources. However, due to the complexity of its reaction
mechanisms, effective simulation and optimization methods remain
lacking. To address these issues, this study integrates lab-scale
kinetic models, which are based on both the literature and
industrial data, into full-process simulation to construct a precise
first-principles model. By combining the first-principles model with
actual production data, an accurate and computationally efficient
surrogate model is established. Three optimization scenarios were
developed based on real-world conditions, aiming to minimize the
content of nonwater-soluble phosphorus (NWSP). The sequential
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quadratic programming for machine learning-embedded optimization (MLSQP) algorithm was applied to solve these optimization
problems, enabling efficient convergence to the Karush—Kuhn—Tucker (KKT) point of the surrogate model. Validated by the
rigorous model, the optimizations under the three scenarios achieved reductions of 20.79%, 8.91%, and 38.61% in NWSP,
respectively. Field tests confirmed an 8.3% reduction in total residual phosphorus and an 8.9% decrease in NWSP, without an

increase in energy or raw material consumption.

1. INTRODUCTION

Phosphorus serves as the lifeline of modern agriculture"” and
stands as a cornerstone of contemporary industry.” Phosphorus
is widely used in manufacturing fertilizers,”* food production,’
semiconductors,” batteries,” and so on. With the development
of science and technology, the demand for phosphorus-
containing chemicals is increasing.g’lo In industrial processes,
the primary methods for extracting phosphorus from these ores
are the wet process”''™"® and the thermal process.'*”'°
Although phosphoric acid produced by the thermal process
contains less fluorine and is purer,'™'” 85—95% of phosphoric
acid is produced through wet process'”'® due to its
affordability and low energy consumption.'”

However, wet-process phosphoric acid production (WPAP)
suffers from phosphorus loss. The phosphorus loss in WPAP is
mainly in the form of nonwater-soluble phosphorus, including
unreacted fluorapatite, calcium hydrogen phosphate dihydrate
(CaHPO,-2H,0) crystals, and metal phosphate crystals. Many
researchers have conducted extensive experiments and
developed kinetic models specifically for phosphate rock
dissolution and phosphogypsum precipitation. Some research-
ers focus on developing a conversion-based empirical kinetic
model for the acidulation of phosphate rock,”*~*” taking into
account various factors, including liquid-to-solid ratio, acid

© 2025 The Authors. Published by
American Chemical Society

WACS Publications

24138

concentration, particle size distribution, stirring rate, temper-
ature, and residence time. Research on the precipitation of
phosphogypsum has primarily concentrated on developing
solubility models under different P,Os, SO; concentration, as
well as temperature.”* >° Abutayeh and Campbell** employed
the Edwards—Maurer—Newman—Prausnitz Pitzer-based
model to predict P,Os loss. Dorozhkin®”*® studied the
dissolution process of natural single fluorophosphate crystals
in phosphoric acid solution, and the measured dissolution rate
was applied to computer simulation of industrial reactors. For
the concentration section, Joao et al.”’ conducted dynamic
simulation. Nevertheless, the existing kinetic studies and
process modeling efforts have been conducted independently
without integration into industrial-scale WPAP simulations.
This disconnect makes lab-scale models fail to capture the
inherent variability of industrial environments. Therefore, one
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Figure 1. Framework of surrogate-assisted optimization of real-world WPAP.
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Figure 2. (a) Real-world wet phosphoric acid production process and (b) its simplified process flow diagram.

motivation for this work is to incorporate lab-scale kinetic With the development of machine learning techniques, data-
driven methods have emerged as an additional and promising

models into industrial-scale models. alternative for modeling, aiming to narrow the gap between
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mechanistic models and actual production. Elmisaoui et al.*’

developed a hierarchical sparse polynomial interpolation for
the first-principle model of phosphate ore dissolution.’'
Bouchkira et al.’* delveloped a surrogate model based on
industrial data for validating the solutionsobtained from first-
principle model-based optimization. However, industrial data
are usually collected under stable operating conditions and
thus tend to cluster around nominal values, lacking a uniform
distribution. In contrast, data generated by first-principles
models can offer more evenly distributed samples, but they
may not fully reflect the complexity and variability of the actual
production processes. Therefore, in this work, we integrate
both data sources for building a model that conforms to actual
production and has a strong generalization ability.

Once the prediction model is established, optimization
techniques®** can be used to find the operating conditions
that minimize nonwater-soluble phosphorus (NWSP). Cho et
al.”> conducted a process simulation for WPAP with
hemihydrate phosphogypsum and conducted a sensitivity
analysis to increase the concentration of phosphoric acid.
Bouchkira et al.’”* established a simulation model for a
phosphoric acid dissolution tank based on mass and energy
balance and applied it to an industrial multiobjective
optimization problem. Bojarski et al.*° combined life cycle
optimization with process simulation under uncertainty to
reduce pollution in wet-process phosphoric acid production.
However, to more easily solve the optimization problem, the
aforementioned studies rely solely on mass and energy
balances or are limited to simplified empirical thermodynamic
models. This leads to limited accuracy in full-process
simulations, thereby making them unsuitable for meeting the
optimization requirements of a more refined production.
Therefore, the ultimate goal of this work is to incorporate well-
designed models into the optimization problem and propose a
time-saving optimization algorithm.

In this work, as illustrated in Figure 1, we present an
advanced modeling method for WPAP by integrating a process
simulation with a precise kinetic model. This approach is
capable of developing a high-fidelity surrogate, which combines
simulated data with real-world operational data. To address the
challenges of optimizing complex chemical processes using
surrogate models, we propose the sequential quadratic
programming for machine learning-embedded optimization
(MLSQP) algorithm. Compared to commonly used heuristic
methods such as genetic algorithms (GA) and particle swarm
optimization (PSO), the MLSQP algorithm demonstrates
superior convergence and stability, allowing rapid convergence
to the Karush—Kuhn—Tucker (KKT) point. Furthermore, the
proposed framework has been successfully implemented in an
industrial setting, resulting in significant improvements in both
production efficiency and environmental performance. These
results not only validate the effectiveness of the approach but
also establish a replicable paradigm for optimizing other
complex chemical systems. The main contributions of this
work are summarized as follows:

1) A first-principles model is developed by integrating a
lab-scale kinetic model with plant-scale process simu-
lation. Based on this mechanistic model and real-world
operational data, an accurate surrogate model for WPAP
is established.

2) The MLSQP algorithm is proposed for solving
surrogate-assisted optimization problems, enabling fast
and stable convergence to the KKT point.

2. PROBLEM STATEMENT

2.1. Process Description. A real-world wet phosphoric
acid production process is illustrated in Figure 2. The entire
process contains sections including attack and digestion
reactors, flash coolers, filtration, and washing units.

In the real-world process shown in Figure 2(a), the reactor is
divided into 6 subtanks, corresponding to R1—R6, as shown in
Figure 2(b), where the acid attack reaction of fluorapatite and
impurity metal oxides mainly occurs, and partial gypsum and
NWSP crystals are also formed. Passing through the reaction
tank, most of the materials enter flash cooling and are
circulated back to the reactor from tank 1 for complete
reaction. The material overflowing from the upper layer of the
reactor enters 3 consecutive digestion tanks, corresponding to
D1-D3 for more complete crystallization. Subsequently, the
materials enter two filtration series, which are simplified using a
single filtration unit coupled with a three-effect wash system.
The filtrate is dilute phosphoric acid (SP2); after washing, the
filter cake becomes phosphogypsum (SP1), and the washed
water enters R2 and R3 as recycled phosphoric acid. The
phosphate ore pulp streams are fed into subtanks R1, R3, and
RS, and the sulfuric acid streams are fed into subtanks R1, R2,
R4, and RS. In practical production, this novel feeding method
aids in precisely managing the concentrations of SO; and P,Os,
ensuring strict control over gypsum crystallization within the
dihydrate zone and promoting a more favorable crystalline
morphology for washing. The main raw materials for this
process are concentrated sulfuric acid (98% H,SO,) and
phosphate ore pulp. The ore composition, particle size
distribution data, and main reactions are shown in Supporting
Information.

2.2. Optimization Problems Description. The efficiency
and economy of the production system are determined by the
residual total phosphorus in gypsum. Total phosphorus
includes water-soluble phosphorus and NWSP. The residual
amount of water-soluble phosphorus is mainly influenced by
the crystal morphology of gypsum. Flake-shaped dihydrate
gypsum crystals are more conducive to thorough washing,
thereby helping to reduce water-soluble phosphorus, whereas
needle-shaped crystals have the opposite effect. Notably, the
crystal morphology of gypsum is controlled by the
concentrations of SO; and P,O; in the digestion tank.
Therefore, once we control the concentrations of SO; and
P,O; in the digestion tank, the residual water-soluble
phosphorus can be stabilized. For NWSP, primarily including
phosphorus in unreacted ore and metal phosphate crystals, its
final content is related to the local concentrations of SO5 and
P,Oq in each reaction tank.

Based on real-world production experience, once the feed
ratio of total sulfuric acid to ore pulp and the amount of
washing water are determined, the concentrations of SO; and
P,0; in the digestion tank can be kept relatively stable, which
in turn stabilizes the residual soluble phosphorus in gypsum.
Therefore, the optimization models are proposed to reduce the
residual NWSP in gypsum under a fixed ore-acid ratio and
washing water. This goal is achieved by adjusting the local
concentrations of SO; and P,Os in each reaction tank, and this

https://doi.org/10.1021/acs.iecr.5c03286
Ind. Eng. Chem. Res. 2025, 64, 24138—24155


https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.5c03286/suppl_file/ie5c03286_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.5c03286/suppl_file/ie5c03286_si_001.pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.5c03286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Industrial & Engineering Chemistry Research

pubs.acs.org/IECR

adjustment is accomplished by regulating the feed ratio of
sulfuric acid/ore pulp in each reaction tank.

We considered three optimization scenarios. The first one is
to minimize the NWSP under the current production
conditions. The second goal is to maximize the system
capacity while maintaining or reducing the content of NWSP.
The third goal is a design-oriented problem. For a system with
two new reaction tanks added, which means the capacity will
be increased, minimize its NWSP. The process flow diagram of
scenario 3 is shown in Figure S1 in Supporting Information.
The decision variables for the three scenarios are all the feed
ratios of sulfuric acid and ore pulp in each reaction tank, while
the decision variables for Scenario 2 also include the total feed
load.

2.2.1. Scenario 1: Minimize NWSP of Base Process. In
scenario 1, the objective, as shown in eq 1, is to minimize the
mass fraction of nonsoluble phosphorus in SP1 by only
adjusting the ratio of sulfuric acid and ore pulp fed to each
reaction tank.

. NP
cemn e MFsen 1)

The phosphorus atom conservation is used to calculate the

content of P,O;. The equation is as follows:

M(P,0 N' x MF'
MX Z -

MEN =
2 iENSP M(i) ()

Where i represents the components containing phosphorus
element, M(-) is the relative molecular weight, and N is the
number of phosphorus atoms in the molecular formula.

The decision variables x and y, upon being input into the
simulator or surrogate model for computation, yield the
corresponding values of the state variables, as shown in eq 3.

E(x,y) = [MFg), MFg,| 3)

Where x represents the ratio of sulfuric acid fed into R1, R2,
R4, and RS; and y represents the ratio of ore pulp fed into R1,
R3, RS; F(-) represents the simulator or surrogate model for
the process system shown in Figure 2(b).

In addition, production limitations necessitate the introduc-
tion of several additional constraints. The feed ratio should
follow the normalization equation, as shown in eq 4 and eq S.

Lx=1 (4)
Ly =1 Q)

Our reaction hypothesis is valid only if the concentration of
phosphoric acid is controlled within the dihydrate crystal-
lization range. Therefore, it is essential to restrict the
concentration of dilute phosphoric acid accordingly:

24 < MFg, < 26 (6)

The maximum flow rate of the pipeline, the temperature of
the reactor, and the uniformity of the feed require setting
upper and lower bounds on the proportion entering reactors,
as shown in eq 7 and eq 8.

x < x < x)° (7)
Ib b
Y, SYSy, (8)

Where in scenario 1, x}b = [0.08, 0.1, 0.1, 0.08] and
x;lb =[021, 1, 1, 0.11] are the lower and upper bounds of

ratio of sulfuric acid fed into R1, R2, R4, and RS, respectively;
and yib = [0.1, 0.1, 0.08] and y;lb =[1, 1, 0.12] are the lower
and upper bounds of ratio of ore pulp fed into R1, R3, and RS,
respectively.

2.2.2. Scenario 2: Maximize Load of Base Process While
Keeping NWSP Constant. In scenario 2, we aim to investigate
the maximum system load under the condition of maintaining
or reducing NWSP. This optimization seeks to improve the
system capacity and production efliciency. The objective is
shown in eq 9:

min —1 + MFyg,
4 3
x€R?, yeR? 1eR (9)

Accordingly, the simulator or the surrogate model should be
E(x,y, 1) = [MFgy, MFgpy] (10)

Where [ is the factor by which the load is increased, ranging
from 1 to 1.15:

1<1<L 115 (11)

Equations 4—8 are also taken as the constraints in this
optimization problem.

2.2.3. Scenario 3: Minimize NWSP of Revamped Process.
Scenario 3 is a design-oriented problem focused on enhancing
the production system. Two new reaction tanks, RN1 and
RN2, were added between R3 and R4. Given the system’s
structure and load, this optimization aims to adjust the
branching ratio of the feed to achieve the minimum NWSP
content. The objective was as follows:

min MFg},Pl
x€R’, yG[R4 (12)

Similarly, we have
E(x y) = [MFgy;, MFg,] (13)

Where x represents the ratio of sulfuric acid fed into R1, R2,
R4, RS, and RN2, and vy represents the ratio of ore pulp fed
into R1, R3, RS, and RN1; F;(-) represents the simulator or
surrogate model for the upgraded production system. Equation
6 is also taken as a constraint in this optimization problem.

Besides, the normalization equation should be

Lx=1 (14)
Ly=1 (15)

The constraints to feed ratio are

Ib b

x; <x< x131 (16)
b ub

y; SYSy, (17)

Where xP = [0.08, 0.1, 0.1, 0.08, 0.2] and

x}’b =[0.21, 1, 1, 0.11, 0.4] are the lower and upper bounds
of ratio of sulfuric acid fed into R1, R2, R4, RS, and RN2,

respectively, and y13b = [0.1, 0.1, 0.08, 0.2] and
y‘;b =1, 1, 0.12, 0.4] are the lower and upper bounds of
ratio of ore pulp fed into R1, R3 RS, and RN1, respectively.

3. METHODOLOGY

In this section, a workflow of surrogate-assisted hybrid
modeling and optimization methodology is proposed, as
shown in Figure 3. We first establish a full-process mass and

https://doi.org/10.1021/acs.iecr.5c03286
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energy balance of a real-word factory using Aspen and
introduce reaction kinetic models from the literature. Second,
we sample data from the established mechanistic model and

acquire the required real-world production data from the
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plant’s distributed control system (DCS). Subsequently, we
develop a surrogate model using mechanistic data and then
perform transfer learning with real-world data to adapt to the

real-world production under different optimization scenarios.
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Finally, the MLSQP algorithm is used for optimization, which
can converge to the KKT point of the surrogate model. The
detailed procedures are as follows:

3.1. First-Principles Model. In this work, the first-
principles model is implemented by Aspen Plus V14, as
shown in Figure 4. First, the ELECNRTL method is selected.
Second, the reaction tanks and digestion tanks are modeled
using RCSTR blocks. Splitter units are simulated with FSplit
(for stream splitting based on flow rate) and SSplit (for solid-
phase splitting). The flash cooling evaporation process is
modeled using a FLASH block. The filter is represented by a
FILTER block. The washers are simulated by using SWash
blocks. Third, the accuracy of the process model should be
improved by tuning some important parameters to minimize
model—plant mismatch. For example, in a real-world plant, the
material flowing from the reaction tank to the digestion tank is
discharged through the overflow outlet and is not a
homogeneous liquid—solid mixture. Therefore, a homoge-
neous splitter cannot be used directly. To simulate this
heterogeneous overflow, we employ an SSplit unit to set the
split ratios for the solid and liquid phases separately. However,
these split ratio parameters cannot be obtained from actual
production processes. Thus, we use the bisection method to
find the split ratio parameters that achieve model—plant
matching with the calculation based on the density of the
actual outlet stream. The main parameters include the solid-
phase split ratio in the SSplit unit, the recycle acid split ratio,
and the washing efficiency. The bisection method is employed
to iteratively search for the parameter value that yields model
output matching the real-world nominal operating condition.
The flowchart is shown in Figure S2 of the Supporting
Information.

Besides, among all the units, the thermodynamics and
kinetics of the chemical reactions occurring in the reactors are
the most critical. They influence the extent of the reaction and
ultimately determine phosphorus loss. Therefore, the selection
of kinetic models and the inversion of missing parameters are
introduced in the following subsections.

3.1.1. Kinetic Model of the Attack of Phosphate Ore. In
reactors, the main reactions are the acidolysis of phosphate ore,
as shown in Table S3(r1) and (r2) in Supporting Information.
The apparent kinetic equation from Soussi-Baatout et al,”® as
shown in eq 18, is adopted.

1-3(1-X)%+2(1 -X)

Lubc d (Ea)
= |k|=| C’DSS
[(s) P\ RT

Where X is the conversion rate of phosphate ore, (L/S) is
the liquid—solid ratio, C is the phosphoric acid concentration
(converted as P,0O;), D is the particle size factors, SS is the
stirring speed, T is the temperature, and ¢ is the residence time.
k, a, b, ¢, and d are the fitted parameters. The reaction kinetics
are implemented with a user-defined kinetic subroutine in
Fortran.

Simultaneously, the side reactions between impurity metal
oxides in the ore and the acid were taken into account, and
their apparent reaction kinetics are expressed in the following
form:**

Xt

(18)

1-301-Xx,)°%+201-X,)

E
= [kDaCbPC exp(—a)] Xt
RT (19)
Where m € {K,0, M0, Al 05}, E, is the activation energy,
and P is the P,O¢-to-CaO ratio.
The side reaction between Fe,O; and acid is governed by

surface chemical reactions, and its apparent reaction kinetics
: 22
are described below:

E
1 - (1 -X.)"%=|kDC"PF e ( *‘] X t
( Fe) [ XPRT

(20)

3.1.2. Equilibrium Constant Function of Precipitation,
Dissolution, and lon lonization. Digestion tanks calculate the
equilibrium constant with the solubility function for CaSO,
2H,0. The precipitation—dissolution equilibrium constants of
gypsum crystals and calcium hydrogen phosphate crystals are
calculated using solubility functions, as shown in eq 21, and the
data are sourced from Abutayeh and Campbell:**

AH? ACp°
anl.=an.°— —'[i - 1 )— Tp‘

R\T T1°

[n 5 -5+
In— - —+1
T T (21)

Where K; is the equilibrium constant, T is temperature, R is
the ideal gas constant, AH is the mixed enthalpy, and ACp is
the mixed heat capacity; superscript © represents the reference
status. In addition to the precipitation—dissolution equili-
brium, this model is also used exclusively to describe the
ionization of HSO,™ and the first and second ionizations of
H,;PO,. The model parameters were also determined according
to Abutayeh and Campbell.**

3.1.3. Kinetics Model for Other Metal Phosphate Crystals.
Due to the absence of the kinetic data on metal phosphate
crystallization, primarily including (r8), (r11), and (r12) as
shown in Table S3 in Supporting Information, production data
under nominal operating conditions is used to fit the model.
The expression of the power-law kinetic model is as follows:

r=k,c" (22)

Where r is the reaction rate, c is the reactant concentration, n
is the reaction order, and k,, is the reaction rate constant,
governed by the Arrhenius equation:

E
k,=A exp(——a)

RT (23)

where A is the pre-exponential factor, E, is the activation
energy, R is the ideal gas constant, and T is the absolute
temperature. The parameters that need to be estimated are A
and E,. Therefore, the estimation problem of reaction kinetic
parameters can be transformed into the following optimization
problem:

min  (ME™" — 0.505%)*
AM EMeR

s.t. MFV = Aspen(AM, E:VI ) (24)
Where MFNP is the mass fraction of NWSP in
phosphogypsum and the superscript M represents metal

phosphate. This optimization problem is solved by directly
calling the Aspen simulation using the particle swarm
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optimization (PSO) algorithm. The overall procedure is
illustrated in Figure S3 of the Supporting Information. First-
order kinetics were assumed for all reactions. For (r11) and

(r12), the result is AM = 0.2619 and EaM = 40.5759 kJ-mol ',

while for (r8), AM = 1.7201 and EM = 38.8654 kJ-mol .

3.2. Data Collection and Analysis. Since the simulation
parameters of the mechanism model are only based on
nominal operating conditions, deviations in model predictions
may arise when operating conditions change. Additionally, the
presence of multiple recycle streams renders the simulation
significantly time-consuming. Thus, this work intends to
combine simulation data with real-world industrial data to
jointly train a surrogate model for subsequent optimization.

The sampling features mainly include load and branch
proportion data. The capacity data specifically covers the total
feed flow rate of sulfuric acid, the total feed flow rate of ore
pulp, and the flow rate of washing water, while the branch ratio
data includes the proportion of feed sulfuric acid entering
reaction tanks 1, 2, 4, and 5 (and RN1), as well as the
proportion of feed ore pulp entering reaction tanks 1, 3, and §
(and RN2). The label includes the mass fraction of NWPS in
phosphogypsum (converted to P,O5) and the mass fraction of
phosphoric acid in crude phosphoric acid (converted to P,Os).

Industrial production data naturally satisfies the normal-
ization conditions and box constraints (e.g, constraints (4),
(5), (7), and (8) in the optimization model). However, when
sampling from the mechanistic model, the generated feature
data are highly likely to violate these constraints. Therefore,
this work develops a hybrid sampling method, illustrated in
Sections S8 and S9 of the Supporting Information, to ensure
that the sampled feature data meets the aforementioned
constraints.

Additionally, we also used the Pearson correlation coefficient
to analyze the linear relationships between features and labels,
which were applied to determine the structure of the surrogate
model. The calculation formula of the Pearson correlation
coeflicient is shown in eq 25:

24144

nZywy — () w)(Z )
\/[nZi,:lxiZ _ (Zi,:lxi)z][”ZLZI}’,-z _ (Zil:ly,-)z]

(25)

r =

where r denotes the Pearson correlation coefficient, n
represents the number of samples, «; is the i-th sample value
of the feature (e.g, load features or branch proportion
features), and y, is the corresponding i-th sample value of the
label. The results show that the capacity features have relatively
significant linear relationships with the label, while the branch
proportion features exhibit nonlinear relationships with the
label. Further explanations and analyses are provided in the
Results section.

3.3. Construction of Surrogate Model. As mentioned
above, we need to use simulation and industrial data to jointly
train a surrogate model for optimization. In this work, we use
the Wide and Deep (W&D) model as a surrogate because it
can handle both linear and nonlinear relationships between
features and labels. Then, we use transfer learning techniques
to fine-tune surrogate models under different scenarios.

3.3.1. Wide and Deep Model. In this work, we apply the
Wide and Deep (W&D) model to regression tasks due to the
similarity in data characteristics, which was first used for
recommender systems.”” The W&D model for phosphoric acid
production is as shown in Figure 5. The output features are the
concentration of phosphoric acid in the product and the
NWSP content in the phosphogypsum. In the wide part, the
model captures several key features: the capacities of sulfuric
acid, phosphate ore, water in pulp, and washing water, all of
which exhibit an approximately linear correlation with the
outputs. In the deep part, a more comprehensive set of features
is considered, including both capacity-related variables and
ratio-based features, to account for their complex nonlinear
relationships with the system responses.

3.3.2. Training W&D Model. First, we train the W&D
model with both simulation data and production data, as
shown in Figure 6(a). The simulation data used are under
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Figure 6. Schematic diagram of the relationship among surrogates and the corresponding transfer learning method.

Table 1. Summary of Surrogate Models’ Information

No. Name Train Valid Test
(a) Foundation 10 162 1412 1412
(b) Load (simulation data) 10 000 1250 1250
(c) Load (real-world data) 500 69 69

(d) New reactor 10 000 1250 1250

Simulated data

Prodaction data Loss function Optimization scenario

Vv v WMES 1

v - MES -
- v cL
v - MES 3

constant load (sulfuric acid: 85 m?/h, ore pulp: 168 m’/h),
which includes 10 000 samples for the training set, 1250 for
the validation set, and 1250 for the test set. From the DCS data
of the past 6 months, we selected sample points with the same
load that simultaneously contained NWSP and phosphoric
acid concentration (162 samples in total). However, due to the
extremely small amount of production data, we adopt weighted
mean-square error (WMSE) as the loss function, as shown in
eq 26:

A~ \2
Ndcs ZiGSIM (zi 2 ) l\TSim Z;'GDCS CLj
l\lsim(Ndcs + l\lsim) Ndcs(l\[:lcs + I\Tsim)
(26)

where SIM is the data set of simulated samples and DCS is
the real-world data set; N, is the number of simulated data
and Ny is the number of real-world data; z is the label of the
surrogate model, and 2 is the predicted value of the model.
Model (a) is used as the surrogate model of optimization
scenario 1 and is named as the Foundation model.

Loss =

For scenario 2, we require the surrogate model to be capable
of predicting the NWSP and phosphate concentration under
different loads and branch ratios. The used simulation data and
production data are under different loads and branch ratios.
The production data include 569 samples in total. We then
perform transfer learning on model (a). First, we froze all
parameters except those in the wide part and the last two layers
of the deep part and trained the model using simulation data,
as shown in Figure 6(b). Then, we performed transfer learning
on model (b). However, since NWSP data are sampled every 4
h while phosphate concentration data is sampled every 12 h,
many samples lack phosphate concentration data. In real-world
production, phosphoric acid concentration is controlled within
the range of 24—26%, although precise values are lacking , a
customer loss (CL) is proposed:

CL = (z,,

(0, 24 — 2,,)° (27)

- Enp)z + max(0, Z,, — 26)” + max
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where the subscript np represents the content of NWSP and
the subscript pa represents the concentration of phosphoric
acid.

For scenario 3, since there is no corresponding real-world
system, we only use simulation data under fixed capacity for
training. Transfer learning is also employed, as shown in Figure
6(d). Nevertheless, the model structure has been adjusted with
the addition of two new features (the branch ratio of RN1 and
RN2). Thus, we transferred the parameters corresponding to
the structure matching the original model, while directly
initializing the parameters for the newly added structure.

The names of the models, the data sets used, and the loss
functions employed are presented in Table 1.

3.4. Optimization Algorithm. In this work, the
deterministic algorithm MLSQP*® is employed, as shown in
Figure 7. A common approach to incorporating surrogate

}

Input X into the surrogate
model and calculate S(Xy)

Calculate the derivatives of
S(Xk) with respect to Xy
based on the computation
graph

v

A

Calculate L(X) and its first |
and second derivatives

Xis1=Xitoudy

A

Hessian matrix Hy

is positive definite Bi=Hx

A 4
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subproblem

|

Obtain di and Lagrange
multipliers

Modify Hy
Bi=H\+Ex

A

Evaluate @ (Xy) and
determine step size a by
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Convergence
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Figure 7. Flowchart of the MLSQP algorithm.

models into deterministic optimization frameworks is to
embed them using a full-space formulation as constraints.
However, this typically requires updating a large number of
intermediate variables at each iteration, which can be
computationally intensive and cumbersome. In contrast, in
the proposed MLSQP algorithm, at each iteration, the decision
variables are first fed into the surrogate model for prediction.
Then, the derivatives of the model outputs with respect to the
inputs are computed directly based on this prediction. The
proposed algorithm can converge to the KKT point of the
surrogate model.

Specifically, this algorithm is built based on the feasible 4path
Sequential Quadratic Programming (SQP) algorithm,””* as

shown in Figure 7. First, a set of decision variables (X) is given,
which is input into the surrogate model to compute the output
S(X), constraints (g and h), objective function (f), and
Lagrangian function (L). Based on the computation graph, the
derivative of the surrogate model’s output S(X) with respect to
X is obtained, thereby calculating the gradient of the
Lagrangian function with respect to X and the Hessian matrix
(H). If H is nonpositive definite, a minimum norm correction
is applied to it. A QP subproblem is then constructed using H,
and iteration direction (d) is obtained by solving this
subproblem. Line search is used to determine the step size
a. Subsequently, X is updated until the convergence condition
is met.

4. RESULTS

4.1. First-Principles Model Simulation Result. Table 2
shows the simulation results and the relative errors compared
with the real-world factory operation data in the steady-state
scenario.

Table 2. Comparison between Simulation Results for Key
Parameters and Real-World Factory

Simulated  Relative

Nomenclature Description Real value value error
Mgp,, ton'h™  Mass flow of SP2  227.00 233.39 2.81%
MFng % Mass fraction of 25.00 24.89 0.44%
P,0; in SP2
Mg, ton-h™  Mass flow of 2 391.00 386.00 1.28%
MF§2, % Mass fraction of 16.00—18.00 17.32 0.00%
P,O; in S2
Mg, ton-h™  Mass flow of SI  802.00 797.00 0.62%
MFgl, % Mass fraction of 29.00—33.00 33.00 0.00%
P,0; in S1
Mgpy, tonth™  Mass flow of SP1  370.00 372.34 0.63%
MFg,,, % Mass fraction of 24.00—26.00 24.24 0.00%
liquids in SP1
MF;‘\IPPI’ % Mass fraction of 0.505 0.505 0.00%
nonsoluble
phosphorus
(characterize
with P,05) in
SP1

The yield of phosphoric acid is determined by the flow rate
and the concentration of P,Oys; therefore, we mainly focus on
verifying the mass fraction of P,O; and the flow rate of the
streams in each unit under the nominal operating condition.
Specifically, the relative errors for the mass flow of
phosphogypsum (SP1), dilute phosphoric acid (SP2), the
stream from the scrubber back to reactor tanks (S1), and the
stream from the digestion tank to the filter (S2) are all below
3%; the relative errors for the mass fraction of P,Oy in S1, S2,
and SP2 are all below 0.5%; the relative errors for the mass
fraction of nonsoluble phosphorus (characterized with P,O;)
in SP1 are 0.00%. However, since parts of the kinetic
parameters are fitted based on nominal operating conditions,
significant deviations occur at points far from the nominal. For
instance, when the load drops to half of the nominal load, the
relative error is approximately 66.67%. Therefore, it is
necessary to establish a surrogate model by incorporating
actual production data.

4.2. Feature Analysis Result. In this work, we use the
absolute Pearson correlation coefficient (APCC) to analyze the
correlation between features and labels. The result is shown in
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Figure 8. Feature analysis with absolute Pearson correlation coefficient, including (a) features related to H;PO, concentration, (b) features related
to NWSP content, (c) crossed features related to H;PO, concentration, and (d) crossed features related to NWSP content.

Table 3. Performance of Different Surrogate Models on Test Data Sets

Load model (real-world

Foundation model Load model (simulated data) data) New reactor model
Model Indicator NSWP PAC NSWP PAC NSWP NSWP PAC
W&D MSE 549 x 107° 727 x 107 323 X 107*  2.69 x 1072 2.02 x 1074 1.63 X 107° 133 x 1072
R 1.00 1.00 0.99 0.99 1.00 1.00 0.97
Relative 0.53 0.12 2.19 0.48 0.58 0.47 0.29
error, %
SVR MSE 142 X 107*  335x 1072 328 x107* 595 % 1072 7.07 X 1072 742 %x 107*  0.19
R 0.99 1.00 0.99 0.99 0.66 0.96 0.98
Relative 1.47 0.35 2.44 0.55 62.62 7.18 1.00
error, %
RF MSE 129 X 107 272 x 1072 3.00 X 107*  5.63 X 107> 7.02 X 1072 932X 1075 4.47 x 107*
R 0.99 1.00 0.99 0.99 0.77 1.00 0.99
Relative 1.24 021 2.18 0.53 62.36 1.75 0.40
error, %
W&D (without MSE - - 1.55 X 107 0.14 1.82 X 1073 1.82 X 10™°  1.46 x 1072
TL) R - - 093 095 0.92 1.00 097
Relative - - 5.73 1.24 7.60 0.72 0.31
error, %
Figure 8, where the branching ratios of sulfuric acid are s4, 13, r1, load, and s2 show some linear correlation. However,
represented by sl, s2, s4, s5, and ore pulp are represented by APCC values are generally low, suggesting that linear

rl, r3, rS.

For the H;PO, concentration, washing water and
production load exhibit strong linear correlations, mainly due
to their impact on the system’s water balance. Acid distribution
ratios show moderate linear correlations, as they influence acid

relationships are insufficient to fully capture feature-label
dependencies. Notably, APCC increases when crossed features
are considered, indicating that NWPS is better characterized
by nonlinear relationships. Therefore, the capacity features,

concentration in individual reactors and, consequently, including load and water, are input into the wide part of the
phosphate rock dissolution. For the NWPS content, features W&D model, while all features are input into the deep part.
24147 https://doi.org/10.1021/acs.iecr.5c03286
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Figure 10. Convergence curve of (a) H;PO, concentration and (b) NWSP under scenario 1.

4.3. Surrogate Model Prediction Result. All surrogate
models adopt the W&D model. The middle layers of the Deep
part share the same structure, which is organized as input—
512-dimensional layer (X3)—256-dimensional layer (X3)—
128-dimensional layer (X3)—64-dimensional layer (x2)—32-
dimensional layer (X2)—16-dimensional layer (X2)—output.
The activation function for the Deep part is selected as the
Swish function. All surrogates are trained with the Adam
optimizer.

For the Foundation model, batch size is set to 64, the
learning rate is set to 0.001, and the number of epochs is set to
2000. For the Load model (simulation data) and the new

24148

reactor model, batch size is set to 64, the learning rate is set to
0.0005, and the number of epochs is set to 1000. For the Load
model (production data), batch size is set to 16, learning rate is
set to 0.0001, and the number of epochs is set to 500.

A high-precision surrogate model is the cornerstone for
ensuring the reliability and practicality of optimization results.
The performance of the W&D models established for 3
optimization scenarios on the test set is shown in Table 3 and
Figure 9. Specifically, for simulated data sets shown in Figure
9(a, b, d—f, h), all 3 models show the capacity to accurately
predict, with the worst-case scenario where the Pearson
correlation coefficient is 0.97 and the average relative error is
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Figure 11. Comparison between results (a) before optimization and

(b) after optimization under scenario 1.

0.02%. For a real-world data set, the prediction of NWSP is
precise, and the accuracy of phosphoric acid concentration
falling within the correct range [24%, 26%] is 98.8%. To
further demonstrate the accuracy of our proposed surrogate
model, we also compare it with support vector regressor (SVR)
and random forest (RF), both of which have undergone
hyperparameter tuning. The accuracy of predicting NWSP and
phosphoric acid concentration (PAC) for the 3 models is
shown in Table 3.

The W&D model outperforms SVR and RF on the test sets
for both the baseline and new reactor tasks. For the load task,
while the W&D model’s accuracy for the NSWP feature in
simulated data is marginally lower than that of the other
models, the performance of SVR and RF on real-world data
sets is notably poor. Given these results, it is reasonable to

conclude that the W&D model achieves higher accuracy than
traditional machine learning models across all 3 tasks. On the
other hand, when the W&D model is trained with the same
hyperparameters but without transfer learning, its performance
is notably inferior compared to when it is trained using transfer
learning. This highlights the significant benefit that transfer
learning (TL) brings to the optimization and accuracy of the
W&D model in the context of WPAP.

4.4. Optimization Result. All optimization problems are
solely solved on a laptop with an AMD Ryzen 7 7840H
processor and Radeon 780M Graphics (3.80 GHz). The initial
point of MLSQP is set at the point with the minimal NWSP in
the data set, with the maximum number of total iterations set
to 500 and the maximum iterations for line searches set to 20.
For PSO applied to surrogate-based optimization, the
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Table 4. Comparison with the Commonly Used Framework under Scenario 1

Method Load NWSP, %
PSO-surrogate 1 0.41
PSO-rigorous 1 0.43
SQP (Aspen) 1 .
MLSQP-surrogate 1 0.41

PAC, % Optimization time/s Status
24.94 27.86 Success
24.43 - Success

- - Opt Fail
24.51 1.73 Success

The convergence curve of
phosphoric acid concentration of Opt 2

(a)

The convergence curve of
non-water-soluble phosphorus of Opt 2

(b)

26.0 fromeeennsnsndinnnan, Verified value Verified value
—— Surrogate model prediction 0.50 - Surrogate model prediction
Error Band ' Error Band
—-— Lower bound
2551 Upper bound 5048
B S
—
=1 Q.
= & 0.46
g 250 2%
c Q.
8 @
—o. oo
= g 0.44
@ 5]
24.5 a
g <
5] Loa2
< (0]
g 2
o c
£ 240 2 0.40
235 0.38
050 075 1.00 125 150 175 200 225 2.50 050 075 1.00 125 150 175 200 225 250
Time/s Time/s
Figure 12. Convergence curve of (a) H;PO, concentration and (b) NWSP under scenario 2.
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Figure 13. Optimization result under scenario 2.

population size is set to 100, and the number of iterations is set
to 100. For the PSO applied to rigorous model-based
optimization, the population size is set to 50, while the
number of iterations remains at 100.

4.4.1. Optimization Scenario 1. The convergence curve of
H;PO, concentration and NWSP content of scenario 1 is
shown in Figure 10, where solid circles represent the
predictions of the surrogate model, while hollow circles denote

the values validated in the rigorous model. The primary
solution, as well as the validated solution, has been rigorously
checked and is found to fully comply with all predefined
constraints. This ensures that the results meet the necessary
standards and requirements. The optimization problem is
solved in 1.7 s, and the content of NWSP in scenario 1 is
reduced by 20.79% compared to the current operating
conditions as shown in Figure 11(a).
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Table 5. Comparison with the Commonly Used Framework under Scenario 2

Method Load NWSP, %
PSO-surrogate 1.15 0.44
PSO-rigorous 1.12 0.39
SQP (Aspen) - -
MLSQP-surrogate L.1S 0.44

PAC, % Optimization time/s Status
24.10 48.68 Success
24.88 - Success

- - Opt Fail
24.54 2.41 Success

The convergence curve of
phosphoric acid concentration of Opt 3

The convergence curve of
non-water-soluble phosphorus of Opt 3
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Figure 14. Convergence curve of (a) H;PO, concentration and (b) NWSP under scenario 3.
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Figure 15. Optimization result under scenario 3.

The distribution of H,SO, and ore pulp, as well as the load
of washing water, is shown in Figure 11(b), and the H;PO,
concentration and NWSP content (validated in a rigorous
model) are also provided. The distribution of H,SO, and ore
pulp into distinct reactors has been shown to markedly
decrease the content of NWSP in phosphogypsum. This effect
is primarily due to the maintenance of suitable SO; and P,O;

concentrations in each reactor, which facilitates maximal acid

dissolution while simultaneously reducing the precipitation of
dicalcium phosphate dihydrate (DCPD) crystals.

To further validate the effectiveness of the proposed
framework, we conducted comparative experiments with
several existing approaches. These include the SQP optimizer
built into Aspen, optimization using PSO to directly call the
rigorous model, which requires thousands of simulations and
takes several days to complete, and optimization using PSO
with a surrogate model. The number of PSOs evaluations to
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Table 6. Comparison with Commonly Used Framework under Scenario 3

Method Load NWSP, % PAC, % Optimization time/s Status
PSO-surrogate 1.16 0.32 24.00 28.19 Success
PSO-rigorous 1.16 0.39 24.30 - Sim Fail
SQP (Aspen) 1.16 - - - Opt Fail
MLSQP-surrogate 1.16 0.32 24.00 2.99 Success
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Figure 16. Partial operation logs and corresponding content of residual phosphorus (a) before and (b) after using optimized results in the real-

world factory.

the rigorous model (iteration number times population size) is
set to be equal to the sampling number used for constructing
the surrogate model. To ensure that the input variables

generated by PSO satisfy the constraints, a feasibility rule was
designed to reduce the probability of generating infeasible
solutions. The results are listed in Table 4. The attempt to
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Table 7. Comparison of the Average Values of Indicators before and after Implementing the Optimization Result

Index Sulfuric acid load, m*h™  Ore pulp load, m*>h™
Before optimization 83.85 165.39
After optimization 84.27 181.50

Gypsum
Acid-to-ore ratio Total phosphorus, % Water-soluble phosphorus, % NWSP, %
0.51 0.60 0.15 0.45
0.46 0.55 0.14 0.41

solve the problem using Aspen’s built-in SQP solver failed to
converge. All PSO and MLSQP methods succeeded, and the
optimization results can be successfully simulated in the
rigorous model. PSO-rigorous provides an optimized result but
not the optimal one. Although PSO-surrogate and MLSQP-
surrogate lead to close solutions, which are better than PSO-
rigorous, MLSQP has a significant advantage in time
consumption and can ensure convergence to the KKT point
of the surrogate model compared to PSO-surrogate.

4.4.2. Optimization Scenario 2. The convergence curve of
H;PO, concentration and NWSP content of scenario 2 is
shown in Figure 12. The optimization problem is solved in 2.3
s. The content of NWSP in scenario 2 is reduced by 8.91%,
and the production load is increased by 15% compared to the
current operating conditions, as shown in Figure 11(a). Note
that the optimal objective consists of load multiplier (1.15)
and the content of NWSP, which equals 0.44% in the primary
result and 0.46% in the verified result. According to the
verification, the optimization results meet the constraints. The
optimization result is shown in Figure 13. As previously
analyzed, when the H,SO, and ore pulp are concentrated in R3
and R4 (the middle section of the reaction system), the NWSP
is relatively low, despite the production load being increased.

The comparison with other commonly used frameworks
under scenario 2 is as shown in Table S. The attempt to solve
the problem using Aspen’s built-in SQP solver still failed to
converge. All PSO and MLSQP succeeded. However, MLSQP
shows the best performance among these frameworks, both in
time consumption and solution.

4.4.3. Optimization Scenario 3. The convergence curve of
H;PO, concentration and NWSP content in scenario 3 is
shown in Figure 14. The optimization problem is solved in 3.0
s. The content of NWSP in scenario 3 is reduced by 38.61%
compared to the current operating conditions shown in Figure
11(a). According to the verification, the optimization results
meet the constraints. The optimization result is shown in
Figure 15. The addition of two extra reactors, along with a
recirculation system, leads to a more uniform distribution of
phosphoric acid and ore pulp during the process, resulting in a
lower NWSP content.

The attempt to solve the problem using Aspen’s built-in
SQP solver still failed to converge. According to Table 6, PSO-
rigorous was successfully solved but resulted in a suboptimal
solution, and the corresponding solution failed to converge
during simulation-based validation in Aspen. The results
obtained using MLSQP and PSO with the surrogate model
were generally consistent; however, MLSQP demonstrated
significantly faster computation speed compared to PSO.

4.5. Real-World Validation. Optimization models are
typically constructed based on a series of assumptions and
ideal conditions, which may not always be fully applicable in
real-world scenarios. By validating the solution within actual
factory environments, it can be ensured that the optimization
strategies are both practical and effective, thereby bridging the
gap between theoretical expectations and practical outcomes.

The optimized result of scenario 1 is validated in a real-
world factory, and the operation logs and the corresponding
content of residual phosphorus are as shown in Figure 16. As
the total load increases, the residence time of the material
decreases. To maintain a low level of NWSP content, it is
necessary to increase the acid-to-ore ratio in order to enhance
the reaction rate. While this adjustment effectively improves
process efficiency, it also leads to higher consumption of
sulfuric acid. Contrary to expectations, the implementation of
our optimization result showed that it could achieve lower
residual phosphorus levels even when handling larger material
loads by tuning the feed ratio between different tanks.
Remarkably, this was accomplished while simultaneously
using smaller acid-to-ore ratios.

The comparison of the average values of key indicators
before and after implementing the optimization results is
shown in Table 7. With a 6.6% increase in total load and a
9.8% reduction in the acid-to-ore ratio, our optimization result
achieved an 8.3% reduction in total residual phosphorus and an
8.9% reduction in NWSP, all without any additional energy or
raw material consumption. This outcome highlights the
efficiency and effectiveness of our optimized process,
demonstrating its capability to enhance performance under
more demanding conditions while maintaining resource
efficiency.

5. CONCLUSION

In this work, we employ surrogate-assisted optimization to help
alleviate the issues of low phosphorus recovery and
phosphogypsum pollution in wet-processed phosphoric acid
production. Specifically, we first addressed the absence of an
accurate mechanistic model. Although numerous studies have
been devoted to developing kinetic models for wet-process
phosphoric acid production, effective integration with the
process simulation has remained elusive. By leveraging both
the literature and real-world production data, we selected an
appropriate model for the actual industrial process and
performed parameter inversion to identify the missing kinetic
parameters, thereby bridging this research gap.

Although mechanistic models can accurately capture
production trends and provide a uniform sample distribution,
a first-principles model cannot maintain high accuracy in all
working conditions. Besides, their simulations often suffer from
slow convergence and frequent divergence due to the nested
multilevel recycle streams. To enhance the robustness of the
optimization framework and ensure reliable performance, we
introduce a surrogate model for optimization purposes. The
structure and features of the surrogate model are carefully
designed based on feature importance evaluation. The MLSQP
algorithm is introduced to solve optimization problems under
3 different scenarios, ensuring convergence to the KKT point
of the surrogate model. Compared with PSO, it also
demonstrates lower computational time consumption.

The optimizations under 3 scenarios achieved reductions of
20.79%, 8.91%, and 38.61% in NWSP, respectively, compared
to nominal operating conditions. The real-world tests
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confirmed an 8.3% reduction in total residual phosphorus and
an 8.9% decrease in NWSP, without increasing energy or raw
material consumption. The satisfactory optimization results
demonstrate that the optimization of the wet-process
phosphoric acid production is successful and show its potential
for application in optimizing similar chemical processes.
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